Subject - Math AI(Standard Level) Topic - Calculus Year - May 2021 - Nov 2022 Paper -1 Answers

Question 1

volume =
$$240 \left(\pi \times 8.4^2 - \frac{1}{2} \times 8.4^2 \times 0.872664... \right)$$

M1M1M1

: Award *M1* 240×area, award *M1* for correctly substituting area sector formula, award *M1* for subtraction of their area of the sector from area of circle.

$$=45800 (=45811.96071)$$

A1

Total [4 marks]

Question 2

(a)
$$A = \int_0^2 (6-3x)(4+x) dx$$

A1A1

Note: Award **A1** for the limits x = 0, x = 2. Award **A1** for an integral of f(x).

[2 marks]

A1

[1 mark]

(c)
$$28 = 0.5 \times a \times 10$$

M1

$$5.6\left(\frac{28}{5}\right)$$

A1

[2 marks]

Total [5 marks]

(a) recognition of need to integrate (eg reverse power rule or integral symbol) (M1)

$$P(x) = -0.8x^2 + 48x (+c)$$
 A1A1

$$260 = -0.8 \times (15)^2 + 48 \times (15) + c \tag{M1}$$

$$c = -280$$

$$P(x) = -0.8x^2 + 48x - 280$$

[5 marks]

(b) profit will decrease (with each new car produced)

EITHER

because the profit function is decreasing / the gradient is negative / the rate of change of ${\cal P}$ is negative

R1

A1

OR

$$\int_{30}^{50} -1.6x + 48 \, (dx) = -320$$

R1

OR

evidence of finding
$$P(30) = 440$$
 and $P(50) = 120$

250

R1

Total [7 marks]

[2 marks]

Question 4

(a)
$$l'(50) = -0.2 \times 50 + 9$$

$$=-1$$
 A1

the curve is decreasing at
$$\theta = 50^{\circ}$$
. A1 [3 marks]

(b) recognition of need to integrate (e.g. reverse power rule or integral symbol or integrating at least one term correctly) (M1)

$$l(\theta) = -0.1\theta^2 + 9\theta (+c)$$
 A1A1

$$205.5 = -0.1 \times (40)^2 + 9 \times (40) + c \tag{M1}$$

$$c = 5.5$$

 $(l(\theta) =) -0.1\theta^2 + 9\theta + 5.5$

[5 marks]

Total [8 marks]

- (a) (i) $A = \frac{1}{2} \times 6 \times q + \frac{1}{2} \times 8 \times p + 48$ **OR** $A = \frac{1}{2} (p+6)(q+8)$ **OR** A = 3q + 4p + 48
 - (ii) valid attempt to link p and q, using tangents, similar triangles or other method (M1)

eg.
$$\tan \theta = \frac{8}{p}$$
 and $\tan \theta = \frac{q}{6}$ OR $\tan \theta = \frac{p}{8}$ and $\tan \theta = \frac{6}{q}$ OR $\frac{8}{p} = \frac{q}{6}$

correct equation linking p and q

eg.
$$pq = 48$$
 OR $p = \frac{48}{q}$ **OR** $q = \frac{48}{p}$

substitute $p = \frac{48}{q}$ into a correct area expression *M1*

$$\text{eg. } \left(A = \right) \frac{1}{2} \times 6 \times q + \frac{1}{2} \times 8 \times \frac{48}{q} + 48 \quad \text{OR} \quad \left(A = \right) \frac{1}{2} \left(\frac{48}{q} + 6\right) \left(q + 8\right)$$

$$A = 3q + \frac{192}{q} + 48$$

Note: The **AG** line must be seen with no incorrect, intermediate working, for the final **M1** to be awarded.

[4 marks]

A1

(b)
$$\frac{-192}{q^2} + 3$$

Note: Award **A1** for $\frac{-192}{q^2}$, **A1** for 3. Award **A1A0** if extra terms are seen.

[2 marks]

(c) (i)
$$\frac{-192}{g^2} + 3 = 0$$

(ii)
$$q = 8 \text{ cm}$$

[2 marks]

Total [8 marks]

(a) (i)
$$c = 10$$

(ii)
$$64a+8b+10=10$$
 A1 $16a+4b+10=12$ **A1**

Note: Award **A1** for each equivalent expression or **A1** for the use of the axis of symmetry formula to find $4 = \frac{-b}{2a}$ or from use of derivative. Award **A0A1** for 64a + 8b + c = 10 and 16a + 4b + c = 12.

(iii)
$$y = -\frac{1}{8}x^2 + x + 10$$
 A1A1

Note: Award **A1A0** if one term is incorrect, **A0A0** if two or more terms are incorrect. Award at most **A1A0** if correct a, b and c values are seen but answer not expressed as an equation.

[5 marks]

$$\int_0^8 -\frac{1}{8}x^2 + x + 10 \, dx \tag{A1}$$

Note: Award (A1) for correct integral, including limits. Condone absence of dx.

$$90.7 \text{ cm}^2 \left(\frac{272}{3}, 90.6666...\right)$$

[3 marks] Total: [8 marks]

(a)
$$(S(x) =) x^2 + 128x^{-1}$$
 (M1)

Note: Award *(M1)* for expressing second term with a negative power. This may be implied by $\frac{1}{x^2}$ seen as part of their answer.

$$2x - \frac{128}{x^2}$$
 OR $2x - 128x^{-2}$

Note: Award **A1** for 2x and **A1** for $-\frac{128}{x^2}$. The first **A1** is for x^2 differentiated correctly and is independent of the **(M1)**.

[3 marks]

(b) (i) EITHER

any correct manipulation of
$$2x - \frac{128}{x^2} = 0$$
 e.g. $2x^3 - 128 = 0$ (M1)

OF

sketch of graph of S'(x) with root indicated (M1)

OR

sketch of graph of S(x) with minimum indicated (M1)

THEN

x = 4

Note: Value must be positive. Follow through from their part (a) irrespective of working.

(ii) the value of x that will minimize surface area of the box

A1

Note: Accept 'optimize' in place of minimize.

[3 marks] Total: [6 marks]

(a) METHOD 1

(when t=2)

$$\frac{dP}{dt} = -4 \quad \mathbf{OR} \quad \frac{dP}{dt} < 0 \text{ (equivalent in words)} \quad \mathbf{OR} \quad 3(2)^2 - 8(2) = -4 \quad \mathbf{M1}$$

therefore P is decreasing

METHOD 2

sketch with t = 2 indicated in 4th quadrant **OR** t-intercepts identified therefore P is decreasing **M1**

[2 marks]

M1

[Total 7 marks]

(b)
$$(P(t) =) t^3 - 4t^2 (+c)$$
 A1A1
 $4 = 1^3 - 4(1)^2 + c$ (M1)

Question 9

(a)
$$f'(x) = -2x^{-2} + 6x$$
 OR $f'(x) = -\frac{2}{x^2} + 6x$ A1(M1)A1

[3 marks]

(b) finding gradient at x=1

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=1} = 4$$

finding the perpendicular gradient

$$m_{\perp} = -\frac{1}{4}$$

$$2 = -\frac{1}{4}(1) + c$$
 OR $y - 2 = -\frac{1}{4}(x - 1)$

$$x + 4y - 9 = 0$$
 A1 [4 marks]

(a)
$$\frac{1}{2}(0.6+0+2(1.2+1.2))$$
 (A1)(M1)

Note: Award **A1** for evidence of h = 1, **M1** for a correct substitution into trapezoidal rule (allow for an incorrect h only). The zero can be omitted in the working.

2.7 m² A1 [3 marks]

(b) $\int_{-1}^{2} \frac{-x^3 - 3x^2 + 4x + 12}{10} dx \text{ OR } \int_{-1}^{2} f(x) dx$ (M1)

Note: Award M1 for using definite integration with correct limits.

2.925 m²

Note: Question requires exact answer, do not award final *A1* for 2.93.

(c) 9-2.925

Note: Award *M1* for 9 seen as part of a subtraction.

[2 marks]

(a) $(f'(x) =) 2x + \frac{3}{x^2}$

A1A1

Note: Award A1 for 2x, A1 for $+\frac{3}{x^2}$ OR $+3x^{-2}$.

[2 marks]

(b) attempt to substitute 1 into their part (a)

(M1)

$$(f'(1) =) 2(1) + \frac{3}{1^2}$$

5

11

[2 marks]

(c) EITHER

$$5 = 2x + \frac{3}{x^2}$$

M1

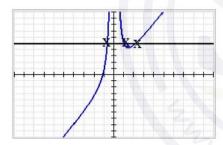
$$x = -0.686, 1, 2.19 \quad (-0.686140..., 1, 2.18614...)$$

A1

OR

sketch of y = f'(x) with line y = 5

M1



three points of intersection marked on this graph (and it can be assumed no further intersections occur outside of this window)

A1

THEN

there are two other tangent lines to f(x) that are parallel to L

A1

[3 marks] Total [7 marks]

EITHER (a)

attempt to substitute 3, 4 and 7 into area of a trapezoid formula (M1)

 $(A=)\frac{1}{2}(7+4)(3)$

given line expressed as an integral (M1)

 $(A =) \int_{-1}^{2} (6 - x) dx$

OR

attempt to sum area of rectangle and area of triangle (M1)

 $(A =) 4 \times 3 + \frac{1}{2} (3)(3)$

THEN

16.5 (square units)

A1 [2 marks]

(A=) $\int_{-1}^{2} 1.5x^2 - 2.5x + 3 \, dx$ (b) (i)

(ii) 9.75 (square units)

A1A1

A1

[3 marks]

16.5 - 9.75(c) 6.75 (square units)

(M1)

[2 marks] Total [7 marks]

(a)
$$0 = 20 - \frac{980}{t^2}$$
 OR $\frac{dP}{dt} = 0$ (M1)

Note: Accept equivalent information presented in a labelled sketch.

$$(h=)$$
 7 hours A1

Note: Award M1A0 for an answer of (7, 280).

[2 marks]

(b) recognition of need to integrate (e.g. reverse power rule or integral symbol) (M1)

$$P(t) = 20t + \frac{980}{t} (+c)$$
 A1A1

$$328 = 20 \times 5 + \frac{980}{5} + c \tag{M1}$$

Note: Award *(M1)* for substitution of P = 328 and t = 5 into their P(t). A constant of integration must be seen (can be implied by a correct answer).

$$c = 32$$

$$P(7) = 20 \times 7 + \frac{980}{7} + 32$$

Note: Award M1 for substituting 7 and their 32 into their P(t).

Do not award the final M mark if their substituted values do not lead to 312.

312 NOK

[6 marks] Total [8 marks]