Subject – Math AI(Standard Level) Topic - Geometry and Trigonometry Year - May 2021 – Nov 2022 Paper -1 Answers

	Allower 5	
Que	estion 1	
(a)	$\frac{3-1}{7-3}$	(M1)
	= 0.5	A1 [2 marks]
(b)	y-2=-2(x-5)	(A1)(M1)
Note	e: Award (A1) for their -2 seen, award (M1) for the correct substitution of $(5, 2)$ and their normal gradient in equation of a line.	
	2x + y - 12 = 0	A1
	2x + y - 12 = 0	[3 marks]
(c)	every point in the cell is closer to ${\ensuremath{\mathrm{E}}}$ than any other snow shelter	A1 [1 mark]
		Total [6 marks]
Que	stion 2	
(a)	$135^{\circ} \times \frac{12\pi}{360^{\circ}}$	(M1)(A1)
	14.1 (m) (14.1371)	A1
		[3 marks]
(b)	evidence of splitting region into two areas	(M1)
	$135^{\circ} \times \frac{\pi 6^2}{360^{\circ}} - \frac{6 \times 6 \times \sin 135^{\circ}}{2}$	(M1)(M1)
	42.411512.7279	
	29.7 m^2 (29.6835)	A1
		[4 marks]
		Total [7 marks]

Question	3
----------	---

(a)	gradient AB = $\frac{4}{12} \left(\frac{1}{3}\right)$	(A1)
	midpoint AB: (8, 22)	(A1)

gradient of bisector $= -\frac{1}{3}$	(M1)
gradient AB	

perpendicular bisector: $22 = -3 \times 8 + b$ **OR** (y-22) = -3(x-8)

- perpendicular bisector: y = -3x + 46
- (b) attempt to solve simultaneous equations x+4 = -3x+46(10.5, 14.5)

Question 4

(a) 25°

(h)	$AC = \frac{380}{\tan 25^\circ}$	OR	AC -	()	2 - 380 ²	OR	380	AC
	tan 25°	UN	Λ C - γ	$(\sin 25^\circ)$	- 500	Un	sin 25°	sin 65°

AC = 815 m (814. 912...)

- (c) METHOD 1 attempt to find AB $AB = \frac{380}{\tan 40^{\circ}}$ = 453 m (452.866...) BC = 814. 912...-452.866... = 362 m (362.046...)
- (d) $362.046...\times 4$ = 1450 mh⁻¹ (1448.18...)

[1 mark] (M1) A1 [2 marks]

[2

(M1)

(A1)

A1

(M1)

A1

(M1)

A1

A1

[5 marks]

[2 marks]

Total [7 marks]

A1

[1 mark]

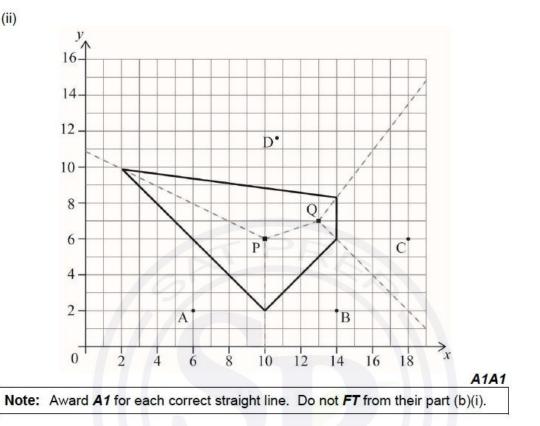
Total [7 marks]

$2 \times 90 \times 34$ (= 6120) AND $2 \times 42 \times 34$ (= 2856)	(A1)
90×42 (= 3780)	(A1)
<i>r</i> = 21	(A1)
$\pi \times 21^2$ (= 441 π , 1385.44)	(M1)
use of curved surface area formula	(M1)
$21\pi \times 90$ (=1890 π , 5937.61)	(A1)
20100 cm ² (20079.0)	A1 Total 17 markal
	Total [7 marks]

(a)	attempt at substitution into 3D distance formula $AB = \sqrt{(140 - 20)^2 + (15 - 5)^2 + 250^2} \left(=\sqrt{77000}\right)$	(M1)	
	$= 277 \text{ m} (10\sqrt{770}, 277.488)$	A1	[2 marks]
(b)	attempt at substitution in the midpoint formula $\left(\frac{140+20}{2}, \frac{15+5}{2}, \frac{0+250}{2}\right)$	(M1)	
	(80, 10, 125)	A1	[2 marks]
(c)	125 m	A1	[1 mark]
		Tota	[5 marks]
Ques	stion 7		
	npt to find any relevant maximum value	(M1)	
	est sides are 56.5 and 82.5 lest possible angle is 102.5	(A1) (A1)	
Silidi	lest possible aligie is 102.5	(A1)	
1	npt to substitute into area of a triangle formula $56.5 \times 82.5 \times \sin(102.5^{\circ})$	(M1)	
= 22	$80(m^2)$ (2275.37)	A1	
		Tota	l [5 marks]

(a) every point in the shaded region is closer to tower T4	R1	
Note: Specific reference must be made to the closeness of tower T4.	M	
	[1 ma	irkj
 (b) (-9, 1) Note: Award A1 for each correct coordinate. Award at most A0A1 if parentheses are missing. 	A1A1	
parentiteses are missing.	[2 mar	ks]
(c) correct use of gradient formula e.g. $(m =) \frac{5-3}{-913} \left(=\frac{1}{2}\right)$	(M1)	
taking negative reciprocal of their <i>m</i> (at any point)	(M1)	
edge gradient $= -2$	A1	
	[3 mar	ks]
	Total [6 mar	ˈks]
estion 9	Total [6 mar	ks]
	Total [6 mar (M1)(A1)(M1)	′ks]
a) $\frac{1}{2} \times 4 \times \pi \times 6^2 + \pi \times 6^2$ OR $3 \times \pi \times 6^2$ lote: Award M1 for use of surface area of a sphere formula (or curved area of a hemisphere), A1 for substituting correct values into hem formula, M1 for adding the area of the circle.	(<i>M1)(A1)(M1)</i> surface	rks]
a) $\frac{1}{2} \times 4 \times \pi \times 6^2 + \pi \times 6^2$ OR $3 \times \pi \times 6^2$ lote: Award <i>M1</i> for use of surface area of a sphere formula (or curved area of a hemisphere), <i>A1</i> for substituting correct values into hem	(<i>M1)(A1)(M1)</i> surface	
a) $\frac{1}{2} \times 4 \times \pi \times 6^2 + \pi \times 6^2$ OR $3 \times \pi \times 6^2$ lote: Award M1 for use of surface area of a sphere formula (or curved area of a hemisphere), A1 for substituting correct values into hem formula, M1 for adding the area of the circle.	(M1)(A1)(M1) surface hisphere A1	
a) $\frac{1}{2} \times 4 \times \pi \times 6^2 + \pi \times 6^2$ OR $3 \times \pi \times 6^2$ Note: Award <i>M1</i> for use of surface area of a sphere formula (or curved area of a hemisphere), <i>A1</i> for substituting correct values into hem formula, <i>M1</i> for adding the area of the circle. = 339 mm ² (108 π , 339.292) b) $\frac{339.292}{2}$	(M1)(A1)(M1) surface hisphere A1 [4 mark	
a) $\frac{1}{2} \times 4 \times \pi \times 6^2 + \pi \times 6^2$ OR $3 \times \pi \times 6^2$ Note: Award <i>M1</i> for use of surface area of a sphere formula (or curved area of a hemisphere), <i>A1</i> for substituting correct values into hem formula, <i>M1</i> for adding the area of the circle. = 339 mm ² (108 π , 339.292) b) $\frac{339.292}{240}$	(M1)(A1)(M1) surface isphere A1 [4 mark (M1)	ks]

(a) (i) 13π cm	A1
Note: Answer must be in terms of π .	
(ii) METHOD 1	
$\frac{\theta}{360} \times 2\pi (18) = 13\pi$ OR $\frac{\theta}{360} \times 2\pi (18) = 40.8407$	(M1)
Note: Award (M1) for correct substitution into length of an arc formula.	
$(\theta =) 130^{\circ}$	A1
METHOD 2	
$\frac{\theta}{360} \times \pi \times 18^2 = \pi \times 6.5 \times 18$	(M1)
$(\theta =) 130^{\circ}$	A1
	[3 marks]
(b) EITHER	
$\frac{130}{360} \times \pi (18)^2$	(M1)
Note: Award (M1) for correct substitution into area of a sector formula.	
OR	
$\pi(6.5)(18)$	(M1)
Note: Award (M1) for correct substitution into curved area of a cone formula.	
THEN	
$(Area =) 368 \text{ cm}^2 (367.566, 117\pi)$	A1
Note: Allow FT from their part (a)(ii) even if their angle is not obtuse.	
satpre?	[2 marks]
	Total: [5 marks]


(a) (the best placement is either point P or point Q) attempt at using the distance formula (M1) $AP = \sqrt{(10-6)^2 + (6-2)^2}$ OR $BP = \sqrt{(10-14)^2 + (6-2)^2}$ OR $DP = \sqrt{(10-10.8)^2 + (6-11.6)^2}$ OR $BQ = \sqrt{(13-14)^2 + (7-2)^2}$ OR $CQ = \sqrt{(13-18)^2 + (7-6)^2}$ OR $DQ = \sqrt{(13-10.8)^2 + (7-11.6)^2}$ (AP or BP or DP =) $\sqrt{32} = 5.66$ (5.65685...) AND (BQ or CQ or DQ =) $\sqrt{26} = 5.10$ (5.09901...) A1 $\sqrt{32} > \sqrt{26}$ OR AP (or BP or DP) is greater than BQ (or CQ or DQ) A1

point P is the furthest away

AG [3 marks]

^{[3} marks] Total: [6 marks]

(a)
$$m = \frac{6-0}{4-2} = 3$$
 (M1)A1 [2 marks]

(b)
$$(m=) -\frac{1}{3} (-0.333, -0.333333...)$$

e.g.
$$y = -\frac{1}{3}x + 4$$
 OR $y - 4 = -\frac{1}{3}(x - 0)$

x+3y-12=0 or any integer multiple

Note: Award *(M1)* for substituting either of their gradients from parts (a) or (b) and point B or (3, 3) into equation of a line.

A1

A1

(M1)

[2 marks]

[1 mark]

(d)	(x =) 12	A1
		[1 mark] Total: [6 marks]
Ques	tion 13	
(a)	attempt at substituting the cosine rule formula	(M1)
	$\cos\theta = \frac{1660^2 + 1550^2 - 1670^2}{2(1660)(1550)}$	(A1)
	(<i>θ</i> =) 62.6° (62.5873) (accept 1.09 rad (1.09235))	A1 [3 marks]
(b)	correctly substituted area of triangle formula	(M1)
	$A = \frac{1}{2}(1660)(1550)\sin(62.5873)$	
<u></u>	$(A =) 1140000 (1.14 \times 10^{6}, 1142043.327) \text{ km}^{2}$	A1
Note	e: Accept 1150000 (1.15×10 ⁶ , 1146279.893) km ² from use of 63°. Other angles and their corresponding sides may be used.	
<u>. </u>		[2 marks]

[2 marks] Total: [5 marks]

(a) midpoint (1, 2.5) A1

$$m_{xg} = \frac{6 - (-1)}{8 - (-6)} = \frac{1}{2}$$
 (M1)A1
Note: Accept equivalent gradient statements including using midpoint.
 $m_{\pm} = -2$ M1
Note: Award M1 for finding the negative reciprocal of their gradient.
 $y - 2.5 = -2(x - 1)$ OR $y = -2x + \frac{9}{2}$ OR $4x + 2y - 9 = 0$ A1
(b) substituting $x = -6$ into their equation from part (a) (M1)
 $y = -2(-6) + \frac{9}{2}$
 $y = 16.5$ A1
Note: Award M1A0 for (-6, 16.5) as their final answer.
[2 marks]
(b) FÂO = sin⁻¹($\frac{5.8}{8.00812...}$) OR $\cos^{-1}(\frac{5.52177...}{8.00812...})$ OR $\tan^{-1}(\frac{5.8}{5.52177...})$ (M1)
 46.4° (46.4077...^o) A1
[2 marks]

height of triangle at roof $= 1.35 - 0.9 = 0.45$	(A1)
slant height $=\sqrt{0.45^2+0.45^2}$ OR $\sin(45^\circ) = \frac{0.45}{\text{slant height}}$	(M1)
$=\sqrt{0.405}$ (0.636396, 0.45 $\sqrt{2}$)	A1
area of one rectangle on roof $=\sqrt{0.405} \times 0.9 ~(= 0.572756)$	M1
area painted = $(2 \times \sqrt{0.405} \times 0.9) = 2 \times 0.572756)$	
$1.15 \text{ m}^2 (1.14551 \text{ m}^2, 0.81\sqrt{2} \text{ m}^2)$	A1 [Total 5 marks]
Question 17	
(a) $\sin \theta = \frac{2.1}{2.8}$ OR $\tan \theta = \frac{2.1}{1.85202}$	(M1)
$(\theta =) 48.6^{\circ} (48.5903^{\circ})$	A1 [2 marks]
(b) METHOD 1	
$\sqrt{2.8^2 - 2.1^2}$ OR 2.8 cos (48.5903) OR $\frac{2.1}{\tan{(48.5903)}}$	(M1)
1.85 (m) (1.85202)	(A1)
(6.4 – 1.85202) 4.55 m (4.54797)	(A1)
$\sqrt{(4.54797)^2 + 2.1^2}$ 5.01 m (5.00939m)	A1
METHOD 2 attempt to use cosine rule	(M1)
$(c^2 =) 2.8^2 + 6.4^2 - 2(2.8)(6.4)\cos(48.5903)$	(A1)(A1)
(c =) 5.01 m (5.00939m)	A1
	[4 marks]
 (c) camera 1 is closer to the cash register (than camera 2 and both camera height on the wall) the larger angle of depression is from camera 1 	s are at the same R1 A1
	[2 marks] Total [8 marks]

(a) attempt to substitute into length of arc formula $\frac{140^{\circ}}{360^{\circ}} \times 2\pi \times 56$

137 cm
$$\left(136.833..., \frac{392\pi}{9} \text{ cm}\right)$$
 A1

[2 marks]

(M1)

(M1)

(b) subtracting two substituted area of sectors formulae

$$\left(\frac{140^{\circ}}{360^{\circ}} \times \pi \times 56^{2}\right) - \left(\frac{140^{\circ}}{360^{\circ}} \times \pi \times 10^{2}\right) \quad \text{OR} \quad \frac{140^{\circ}}{360^{\circ}} \times \pi \times \left(56^{2} - 10^{2}\right) \tag{A1}$$

 3710 cm^2 (3709.17... cm²)

A1 [3 marks] Total [5 marks]

[1 mark]
3 marks]
[1 mark]
[1 mark] '6 marks]

(a)
$$\sin(B\hat{S}K) = \frac{218}{1200}$$
 OR $\frac{\sin(BSK)}{218} = \frac{\sin(90^{\circ})}{1200}$ (M1)
Note: Award M1 for a correct trig formula. Accept other variables representing $B\hat{S}K$.
(B $\hat{S}K = 10.5^{\circ}$ (10.4668...) A1
Note: Award A1 for the radian answer, 0.182681.... Award M1A0 if the candidate finds the correct angle of elevation but then uses it to find a complementary angle as their final answer.
(b) $SB^{2} + 218^{2} = 1200^{2}$ OR $\cos(10.4668...) = \frac{SB}{1200}$ OR $\tan(10.4668...) = \frac{218}{SB}$ OR
 $\frac{BS}{\sin(79.5331...^{\circ})} = \frac{1200}{\sin(90^{\circ})}$ (M1)
1180 (m) $(\sqrt{1392476}, 1180.03...)$ A1
(c) 1.18×10^{3} (M1)
Note: Award A1 for 1.18
Award A1 for 10^{3}
Accept their rounded answer to part (b).
Award A0A0 for answers of the type: 11.8×10^{2} .
(Z marks]
(Z marks]
(Z marks]
(Z marks]
(Z marks]
(D marks]
(C marks]