Subject - Math AI(Standard Level) Topic - Geometry and Trigonometry Year - May 2021 - Nov 2022 Paper -2 Answers

Question 1

(a)) (i)	0.909 (0.909181)								A2	
	(ii)	(very) str	ong and	positive						A1A1	
No	ote: Aw	ard A1 for	(very) st	rong A1	for posi	tive.					
	(,									[4 marks]	
(b) $y = 1.14x + 0.578$ ($y = 1.14033x + 0.578183$)									A1A1		
											[2 marks]
(c)	(i)	1.14×10+	0.578							M1	
		12.0 (11.9	814)							A1	
	(ii) no the estimate is not reliable									A1	
	outside the known data range									R1	
	OR										
		a score gi	reater th	an 10 is	not poss	sible				R1	
(d)											٦
	Comp	etitors	A	В	С	D	Е	F	G	Н	
	Stan's	rank	7	8	6	4	2	4	1	4	
	Minsu	n's rank	7	8	6	4.5	3	2	1	4.5	
										A1A1	[2 marks]
											[2 marks]
(e)	(i)	0.933 (0.9	32673	.)						A2	
	(ii)) Stan and Minsun strongly agree on the ranking of competitors.									
											[4 marks]
(f)	decr	easing the	score to	9.1, do	es not ch	ange the	rank of	competit	or G	A1	[1 mark]
										Total	[17 marks]

(a)
$$4 \times \frac{360^{\circ}}{12}$$
 OR $4 \times 30^{\circ}$ (M1)

120° A1 [2 marks]

[3 marks]

[2 marks]

[2 marks]

(b) substitution in cosine rule (M1)

$$AB^{2} = 10^{2} + 6^{2} - 2 \times 10 \times 6 \times \cos(120^{\circ})$$
 (A1)

$$AB = 14 \text{ cm}$$

Note: Follow through marks in part (b) are contingent on working seen.

 $\theta = 13 \times 6$ (c) (M1)

 $=78^{\circ}$ A1

[2 marks] substitution into the formula for arc length (M1)(d)

$$l = \frac{78}{360} \times 2 \times \pi \times 10$$
 OR $l = \frac{13\pi}{30} \times 10$

=13.6 cm
$$\left(13.6135..., 4.33\pi, \frac{13\pi}{3}\right)$$

(e) substitution into the area of a sector (M1) $A = \frac{78}{360} \times \pi \times 10^2$ OR $l = \frac{1}{2} \times \frac{13\pi}{30} \times 10^2$

=
$$68.1 \text{ cm}^2 \left(68.0678..., 21.7\pi, \frac{65\pi}{3} \right)$$

(f) 23 A1

[1 mark]

(g) correct substitution

$$h = 10\cos(160^\circ) + 13$$

= 3.60 cm (3.60307

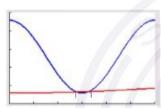
(M1)

A1

=3.60 cm (3.60307...)

[2 marks]

A1 (h) 10


[1 mark]

EITHER (i)

$$10 \times \cos(\theta) + 13 = -10 \times \cos\left(\frac{\theta}{12}\right) + 13$$

(M1)

OR

(M1)

Note: Award **M1** for equating the functions. Accept a sketch of $h(\theta)$ and $g(\theta)$ with point(s) of intersection marked.

THEN

$$k = 196^{\circ} (196.363...)$$

A1

Note: The answer 166.153... is incorrect but the correct method is implicit. Award (M1)A0.

[2 marks]

Total [17 marks]

(a)	use of cosine rule	(M1)	
	$\hat{ACB} = \cos^{-1}\left(\frac{1005^2 + 1225^2 - 650^2}{2 \times 1005 \times 1225}\right)$	(A1)	
	= 32.0° (31.9980)	A1	
			[3 marks]
(b)	use of sine rule	(M1)	
65 G	$\frac{DE}{} = \frac{210}{}$	(A1)	
	sin 31.9980° sin 100°	Dall II da	
	(DE =) 113 m (112.9937)	A1	[3 marks]
			[5 marks]
(c)	METHOD 1		
	180° - (100° + their part (a))	(M1)	
	= 48.0019° OR 0.837791	(A1)	
	substituted area of triangle formula	(M1)	
	$\frac{1}{2} \times 112.9937 \times 210 \times \sin 48.002^{\circ}$	(A1)	
	8820 m ² (8817.18)	A1	
	METHOD 2		
	CE 210		
	$\frac{1}{\sin(180-100-\text{their part }(a))} = \frac{1}{\sin(100-100-\text{their part }(a))} = \frac{1}{\sin(10$	(M1)	
	(CE =) 158.472	(A1)	
	substituted area of triangle formula	(M1)	
	EITHER		
	$\frac{1}{2} \times 112.993 \times 158.472 \times \sin 100$	(A1)	
	OR .		
	$\frac{1}{2} \times 210 \times 158.472 \times \sin(\text{their part } (a))$	(A1)	
	2	(7.17)	
	THEN		
	8820 m ² (8817.18)	A1	
	S S S S S S S S S S S S S S S S S S S		

METHOD 3

$$CE^2 = 210^2 + 112.993...^2 - (2 \times 210 \times 112.993... \times \cos(180 - 100 - \text{their part } (a)))$$
 (M1) (CE =) 158.472... (A1) substituted area of triangle formula (M1)

$$\frac{1}{2}$$
×112.993...×158.472...×sin100 (A1)

[5 marks]

8817.18...=
$$\frac{1}{2}$$
×DF×(1005-210)×sin 48.002...° (A1)

[4 marks]

Total [15 marks]

(a)
$$\tan(\theta) = \frac{6}{10}$$
 (M1)

 $(\theta =) 31.0^{\circ} (30.9637...^{\circ})$ **OR** 0.540 (0.540419...)

[2 marks]

A1

(b) (i)
$$(CV =) 40 \tan(\theta)$$
 OR $(CV =) 4 \times 6$ (M1)

Note: Award (M1) for an attempt at trigonometry or similar triangles (e.g. ratios).

$$(CV =) 24 \text{ m}$$
 A1

(ii)
$$(V =) \frac{1}{3}80^2 \times 24 - \frac{1}{3}60^2 \times 18$$
 M1A1A1

Note: Award *M1* for finding the difference between the volumes of two pyramids, *A1* for each correct volume expression. The final *A1* is contingent on correct working leading to the given answer.

If the correct final answer is not seen, award at most M1A1A0. Award M0A0A0 for any height derived from $V = 29\,600$, including 18.875 or 13.875.

$$(V =) 29600 \text{ m}^3$$

[5 marks]

(c) METHOD 1

$$\left(\frac{29\,600}{80} = \right) \,370 \,\,\text{(days)}$$
 A1 (370 > 366) Joshua is correct

Note: Award **A0A0** for unsupported answer of "Joshua is correct". Accept 1.01... > 1 for the first **A1** mark.

METHOD 2

$$80 \times 366 = 29280 \text{ m}^3$$
 OR $80 \times 365 = 29200 \text{ m}^3$ A1 (29280 < 29600) Joshua is correct

Note: The second A1 can be awarded for an answer consistent with their result.

[2 marks]

(d) height of trapezium is
$$\sqrt{10^2+6^2}$$
 (=11.6619...) (M1) area of trapezium is $\frac{80+60}{2} \times \sqrt{10^2+6^2}$ (=816.333...) (M1)(A1)

$$(SA =) 4 \times \left(\frac{80 + 60}{2} \times \sqrt{10^2 + 6^2}\right) + 60^2$$
 (M1)

Note: Award *M1* for adding 4 times their (MNOP) trapezium area to the area of the (60×60) base.

$$(SA =) 6870 \text{ m}^2 (6865.33 \text{ m}^2)$$

A1

Note: No marks are awarded if the correct shape is not identified.

[5 marks] Total: [14 marks]

(a) (i) maximum h = 130 metres

A1

A1

(ii) minimum h = 50 metres

[2 marks]

(b) (i) $(60 \div 12 =) 5$ seconds

A1

(ii) 360÷5

(M1)

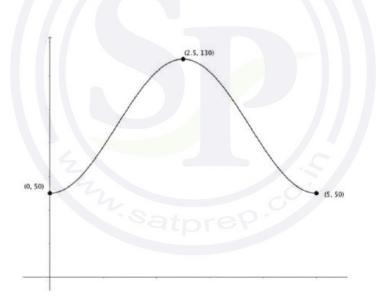
Note: Award (M1) for 360 divided by their time for one revolution.

$$=72^{\circ}$$

A1

[3 marks]

(c) (i) (amplitude =) 40


A1

(ii) (period = $\frac{360}{72}$ =) 5

A1

[2 marks]

(d)

Maximum point labelled with correct coordinates.

A1

At least one minimum point labelled. Coordinates seen for any minimum points must be correct.

A1

A1

Correct shape with an attempt at symmetry and "concave up" evident as it approaches the minimum points. Graph must be drawn in the given domain.

[3 marks]

 $h = 90 - 40\cos(144^\circ)$ (M1)(e) (i) (h =) 122 m (122.3606....)A1 (ii) evidence of h = 100 on graph **OR** $100 = 90 - 40\cos(72t)$ (M1)t coordinates 3.55 (3.54892...) **OR** 1.45 (1.45107...) or equivalent (A1) Note: Award A1 for either t-coordinate seen. = 2.10 seconds (2.09784...) A1 [5 marks] 5-2.09784...(f) (i) (M1)(2.902153...)(M1)5 A1 0.580 (0.580430...) METHOD 1 (ii) changing the frequency/dilation of the graph will not change the proportion of time that point C is visible. A1 A1 0.580 (0.580430...) METHOD 2 correct calculation of relevant found values (2.902153...)/2A1 5/2 A1 0.580 (0.580430...) Note: Award A0A1 for an unsupported correct probability.

> [5 marks] Total: [20 marks]

(a) (i)
$$\left(\frac{1}{2}\hat{AOB} = \right) \arccos\left(\frac{4}{4.5}\right) = 27.266...$$
 (M1)(A1)

$$\hat{AOB} = 54.532... \approx 54.5^{\circ} (0.951764... \approx 0.952 \text{ radians})$$

Note: Other methods may be seen; award (M1)(A1) for use of a correct trigonometric method to find an appropriate angle and then A1 for the correct answer.

(ii) finding area of triangle

EITHER

area of triangle =
$$\frac{1}{2} \times 4.5^2 \times \sin(54.532...)$$
 (M1)

Note: Award M1 for correct substitution into formula.

$$= 8.24621... \approx 8.25 \text{ m}^2$$
 (A1)

OR

$$AB = 2 \times \sqrt{4.5^2 - 4^2} = 4.1231...$$

area triangle =
$$\frac{4.1231...\times 4}{2}$$
 (M1)

$$= 8.24621... \approx 8.25 \text{ m}^2$$
 (A1)

finding area of sector

EITHER

area of sector =
$$\frac{54.532...}{360} \times \pi \times 4.5^2$$
 (M1)

$$=9.63661... \approx 9.64 \text{ m}^2$$
 (A1)

OF

area of sector =
$$\frac{1}{2} \times 0.9517641... \times 4.5^2$$
 (M1)

$$=9.63661... \approx 9.64 \text{ m}^2$$
 (A1)

THEN

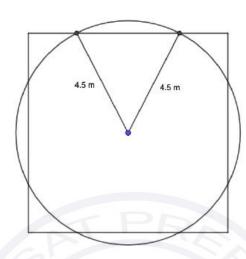
area of segment = 9.63661...-8.24621...

$$=1.39 \text{ m}^2 (1.39040...)$$

[8 marks]

(b) (i)
$$\pi \times 4.5^2$$
 63.6 m² (63.6172...m²)

(M1)


A1

(A1)

(M1)

A1

(ii) METHOD 1

$$4\times1.39040...$$
 (5.56160)
subtraction of four segments from area of circle
= $58.1~\text{m}^2$ (58.055...)

METHOD 2

$$4(0.5\times4.5^{2}\times\sin 54.532...)+4\left(\frac{35.4679}{360}\times\pi\times4.5^{2}\right)$$
 (M1)

$$=58.1 \text{ m}^2 (58.055...)$$

[5 marks]

(c) sketch of
$$\frac{\mathrm{d}V}{\mathrm{d}t}$$
 OR $\frac{\mathrm{d}V}{\mathrm{d}t} = 0.110363...$ OR attempt to find where $\frac{\mathrm{d}^2V}{\mathrm{d}t^2} = 0$ (M1) $t=1$ hour

A1

[2 marks] [Total 15 marks]

(a) EITHER

annual cycle for daylight length

R1

OR

there is a minimum length for daylight (cannot be negative)

R1

OR

a quadratic could not have a maximum and a minimum or equivalent

R1

Note: Do not accept "Paula's model is better".

[1 mark]

(b) (i) 4

A1

(ii) 12

A1

(iii) y=12

A1A1

Note: Award A1 "y = (a constant)" and A1 for that constant being 12.

[4 marks]

(c)
$$f(t) = -4\cos(30t) + 12$$
 OR $f(t) = -4\cos(-30t) + 12$

A1A1A1

Note: Award **A1** for b=30 (or b=-30), **A1** for a=-4, and **A1** for d=12. Award at most **A1A1A0** if extra terms are seen or form is incorrect. Award at most **A1A1A0** if x is used instead of t.

[3 marks]

(d)
$$10.5 = -4\cos(30t) + 12$$

(M1)

EITHER

$$t_1 = 2.26585..., t_2 = 9.73414..$$

(A1)(A1)

OR

$$t_1 = \frac{1}{30} \cos^{-1} \frac{3}{8}$$

(A1)

$$t_2 = 12 - t_1$$

(A1)

THEN

9.73414...- 2.26585...

7.47 (7.46828...) months (0.622356...years)

A1

Note: Award *M1A1A1A0* for an unsupported answer of 7.46. If there is only one intersection point, award *M1A1A0A0*.

[4 marks]

(a) (i) an attempt to find the amplitude
$$\frac{61.8}{2} \quad \text{OR} \quad \frac{64.5-2.7}{2}$$

$$(a=) \ 30.9 \ \text{m}$$
 A1

Note: Accept an answer of (a =) -30.9 m.

(ii)
$$(period = \frac{60}{1.5} =) 40 (s)$$
 (A1) $((b =) \frac{360^{\circ}}{40})$ (b =) 9

Note:Accept an answer of (b =) -9.

(iii) attempt to find
$$d$$
 (M1)
$$(d =) 30.9 + 2.7 \quad \text{OR} \quad \frac{64.5 + 2.7}{2}$$
 ($d =) 33.6 \text{ m}$ A1

(b) 12×1.5 OR $\frac{12 \times 60}{40}$ (M1)18 (revolutions per ride) A1 [2 marks]

(c) (i)
$$0 \le t \le 720$$
 A1

(ii) $2.7 \le h \le 64.5$ A1A1

Note: Award A1 for correct endpoints of domain and A1 for correct endpoints of range. Award A1 for correct direction of both inequalities.

(d) graph of h(t) and y = 16.7 **OR** h(t) = 16.7(M1)6.31596... and 33.6840... (A1)27.4 (s) (27.3680...) A1 [3 marks]

[3 marks]

(e) (i) d

(ii) EITHER d + 30.9 = 65.2 (A1)

OR 65.2 - (61.8 + 2.7) = 0.7 (A1)

OR
3.4 (new platform height) (A1)

THEN (d=) 34.3 m A1 [3 marks] Total [17 marks]

(a)
$$\left(\frac{2+6}{2}, \frac{2+0}{2}\right)$$
 (M1) (4,1)

Note: Award A0 if parentheses are omitted in the final answer.

[2 marks]

$$\left(\frac{0-2}{6-2}\right) - \frac{1}{2} \tag{A1}$$

therefore the gradient of perpendicular bisector is 2 (M1)

so
$$y-1=2(x-4)$$
 $(y=2x-7)$

[4 marks]

(c) identifying the correct equations to use:

$$y = 2 - x$$
 and $y = 2x - 7$ (M1)

evidence of solving their correct equations or of finding intersection point graphically

$$(3,-1)$$
 A1

Note: Accept an answer expressed as "x = 3, y = -1".

[3 marks]

$$YZ = \sqrt{(7 - (-1))^2 + (7 - 3)^2}$$

$$= \sqrt{80} (4\sqrt{5})$$
A1

[2 marks]

(e) METHOD 1 (cosine rule)

length of XZ is
$$\sqrt{80}$$
 (4 $\sqrt{5}$, 8.94427...) (A1)

Note: Accept 8.94 and 8.9.

$$\cos X\hat{Y}Z = \frac{80 + 32 - 80}{2 \times \sqrt{80}\sqrt{32}} \quad (= 0.316227...)$$
 (A1)

Note: Award **A1** for correct substitution of XZ, YZ, $\sqrt{32}$ values in the cos rule. Exact values do not need to be used in the substitution.

$$(\hat{XYZ} =) 71.6^{\circ} (71.5650...^{\circ})$$

METHOD 2 (splitting isosceles triangle in half)

length of XZ is
$$\sqrt{80} \, \left(4\sqrt{5} \,, \, 8.94427... \right)$$
 (A1)

Note: Accept 8.94 and 8.9.

required angle is
$$\cos^{-1}\left(\frac{\sqrt{32}}{2\sqrt{80}}\right)$$
 (M1)(A1)

Note: Award **A1** for correct substitution of XZ (or YZ), $\frac{\sqrt{32}}{2}$ values in the cos rule. Exact values do not need to be used in the substitution.

$$(\hat{XYZ} =) 71.6^{\circ} (71.5650^{\circ})$$

Note: Last **A1** mark may be lost if prematurely rounded values of XZ, YZ and/or XY are used.

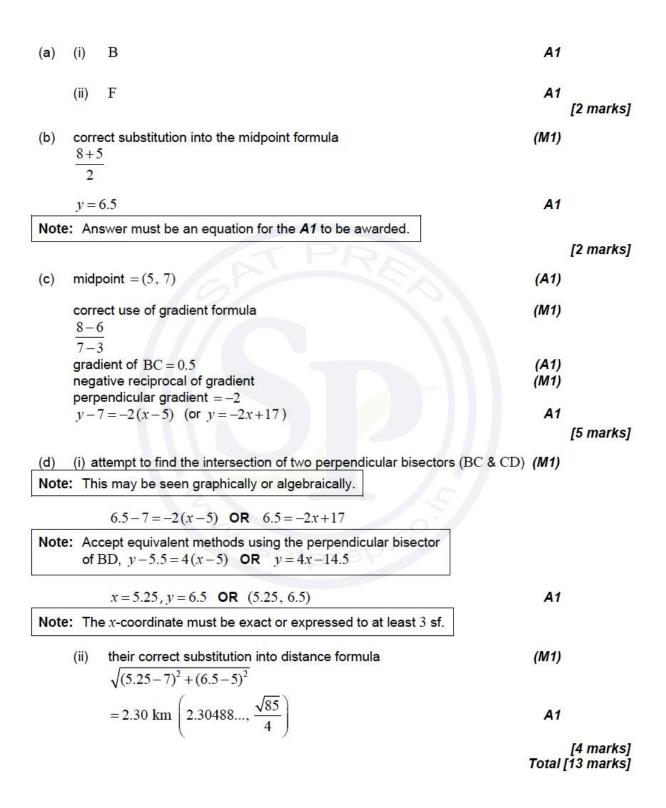
[4 marks]

[2 marks]

(f) (area =)
$$\frac{1}{2}\sqrt{80}\sqrt{32}\sin 71.5650...$$
 OR (area =) $\frac{1}{2}\sqrt{32}\sqrt{72}$ (M1)
= 24 km²

g) Any sensible answer such as:

There might be factors other than proximity which influence shopping choices.


A larger area does not necessarily result in an increase in population.

The supermarkets might be specialized / have a particular clientele who visit even if other shops are closer.

Transport links might not be represented by Euclidean distances. etc.

R1

[1 mark] Total [18 marks]

(ii)
$$\frac{BD}{\sin 120^\circ} = \frac{40}{\sin 19^\circ}$$
 (M1)(A1)

Note: Award M1 for substituted sine rule for BCD, A1 for their correct substitution.

A1

[4 marks]

(b) METHOD 1 (cosine rule)

$$\cos BAD = \frac{85^2 + 85^2 - 106.401...^2}{2 \times 85 \times 85}$$
 (M1)(A1)

Note: Award M1 for substituted cosine rule, A1 for their correct substitution.

77.495

Note: Accept an answer of 77.149 from use of 3 sf answer from part (a). The final answer must be correct to five significant figures.

METHOD 2 (right angled trig/isosceles triangles)

$$\sin\left(\frac{\text{BAD}}{2}\right) = \frac{53.2008...}{85}$$

(A1)(M1)

Note: Award A1 for 53.2008... seen. Award M1 for correctly substituted trig ratio. Follow through from part (a).

Note: Use of 3 sf answer from part (a), results in 77.149.

[3 marks]

(c) EITHER

$$(Area =) \frac{1}{2} \times 85 \times 85 \times \sin(77^\circ)$$

(M1)(A1)

Note: Award *M1* for substituted area formula, *A1* for correct substitution. Award at most *(M1)(A1)A0* if an angle other than 77° is used.

OR

$$(Area =) \frac{1}{2} \times \left(2 \times 85 \times \sin(38.5^\circ)\right) \times \left(85 \times \cos(38.5^\circ)\right)$$
 (M1)(A1)

Note: Award *M1* for substituted area formula $A = \frac{1}{2}bh$, *A1* for correct substitution.

[3 marks]

(d) 85 m

A1

[1 mark]

(e)
$$85+85+\frac{77}{360}\times2\pi\times85$$

(M1)(M1)

Note: Award *M1* for correctly substituted into $\frac{\theta}{360} \times 2\pi \times r$, *M1* for addition of AB and AD.

284 m (284.231...)

A1

[3 marks]

(f)
$$\frac{77}{360} \times \pi \times (85)^2 - 3519.91...$$

(M1)(M1)

Note: Award *M1* for correctly substituted area of sector formula, *M1* for subtraction of their area from part (c).

1330 m² (1334.93...)

A1

[3 marks] Total [17 marks]