SATPREP

Calculus

- 1. Let $g(x) = \frac{\ln x}{x^2}$, for x > 0.
 - (a) Use the quotient rule to show that $g(x) \cdot \frac{1 \cdot 2 \ln x}{x^3}$.
 - (b) The graph of g has a maximum point at A. Find the x-coordinate of A.

2. Let
$$h(x) = \frac{6x}{\cos x}$$
. Find $h'(0)$

- 3. Let $f(x) = e^{-3x}$ and $g(x) = \sin x \cdot \frac{\pi}{3}$.
 - (a) Write down
 - (i) f(x);
 - (ii) g'(x).
 - (b) Let $h(x) = e^{-3x} \sin \cdot x \cdot \frac{\pi}{3} \cdot .$ Find the exact value of $h' \cdot \frac{\pi}{3} \cdot .$
- 4. A gradient function is given by $\frac{dy}{dx} \cdot 10e^{2x} \cdot 5$. When x = 0, y = 8. Find the value of y when x = 1.
- 5. Let $g(x) = 2x \sin x$.
 - (a) Find g'(x).
 - (b) Find the gradient of the graph of g at $x = \pi$.
- 6. Let $f(x) = e^x \cos x$. Find the gradient of the normal to the curve of f at $x = \pi$.
- 7. The graph of $y = \sqrt{x}$ between x = 0 and x = a is rotated 360° about the x-axis. The volume of the solid formed is 32π . Find the value of a.