SATPREP

Calculus

1. Let $g(x)=\frac{\ln x}{x^{2}}$, for $x>0$.
(a) Use the quotient rule to show that $g^{\prime}(x)=\frac{1-2 \ln x}{x^{3}}$.
(b) The graph of g has a maximum point at A. Find the x-coordinate of A .
2. Let $h(x)=\frac{6 x}{\cos x}$. Find $h^{\prime}(0)$.
3. Let $f(x)=\mathrm{e}^{-3 x}$ and $g(x)=\sin \left(x-\frac{\pi}{3}\right)$.
(a) Write down
(i) $f^{\prime}(x)$;
(ii) $g^{\prime}(x)$.
(b) Let $h(x)=\mathrm{e}^{-3 x} \sin \left(x-\frac{\pi}{3}\right)$. Find the exact value of $h^{\prime}\left(\frac{\pi}{3}\right)$.
4. A gradient function is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=10 \mathrm{e}^{2 x}-5$. When $x=0, y=8$. Find the value of y when $x=1$.
5. Let $g(x)=2 x \sin x$.
(a) Find $g^{\prime}(x)$.
(b) Find the gradient of the graph of g at $x=\pi$.
6. Let $f(x)=\mathrm{e}^{x} \cos x$. Find the gradient of the normal to the curve of f at $x=\pi$.
7. The graph of $y=\sqrt{x}$ between $x=0$ and $x=a$ is rotated 360° about the x-axis. The volume of the solid formed is 32π. Find the value of a.
