SATPREP

Assignment : Complex Number

1. Let z = x + yi. Find the values of x and y if (1 - i)z = 1 - 3i.

2. Let
$$z_1 = \frac{\sqrt{6} - i\sqrt{2}}{2}$$
, and $z_2 = 1 - i$

(a) Write z_1 and z_2 in the form $r(\cos \theta + i \sin \theta)$, where r > 0 and $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.

(b) Show that
$$\frac{z_1}{z_2} = \cos \frac{\pi}{12} + i \sin \frac{\pi}{12}$$

- (c) Find the value of $\frac{z_1}{z_2}$ in the form a + bi, where a and b are to be determined exactly in radical (surd) form. Hence or otherwise find the exact values of $\cos \frac{\pi}{12}$ and $\sin \frac{\pi}{12}$.
- 3. Find the values of a and b, where a and b are real, given that (a + bi)(2 i) = 5 i.
- 4. Given that $z \in \mathbb{C}$, solve the equation $z^3 8i = 0$, giving your answers in the form $z = r (\cos \theta + i \sin \theta)$.
- 5. The complex number *z* satisfies the equation

$$\sqrt{z} = \frac{2}{1-i} + 1 - 4i$$

Express z in the form x + iy where $x, y \in \mathbb{Z}$.

6. Let the complex number *z* be given by

$$z=1+\frac{\mathrm{i}}{\mathrm{i}-\sqrt{3}}\,.$$

Express z in the form a + bi, giving the **exact** values of the real constants a, b.

7. Given that $|z| = 2\sqrt{5}$, find the complex number z that satisfies the equation

$$\frac{25}{z} - \frac{15}{z^*} = 1 - 8i.$$