SATPREP

Assignment : Continuous Random Variable

1. A discrete random variable X has its probability distribution given by

$$
\mathrm{P}(X=x)=k(x+1), \text { where } x \text { is } 0,1,2,3,4 .
$$

(a) Show that $k=\frac{1}{15}$.
(b) Find $\mathrm{E}(X)$.
2. The random variable X has probability density function f where

$$
f(x)=\left\{\begin{array}{cc}
k x(x+1)(2-x), & 0 \leq x \leq 2 \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) Sketch the graph of the function. You are not required to find the coordinates of the maximum.
(b) Find the value of k.
3. A continuous random variable X has probability density function

$$
f(x)=\left\{\begin{array}{cc}
0, & x<0 \\
a \mathrm{e}^{-a x}, & x \geq 0
\end{array}\right.
$$

It is known that $\mathrm{P}(X<1)=1-\frac{1}{\sqrt{2}}$.
(a) Show that $a=\frac{1}{2} \ln 2$.
(b) Find the median of X.
(c) Calculate the probability that $X<3$ given that $X>1$.
4. A continuous random variable X has the probability density function f given by

$$
f(x)=\left\{\begin{array}{cc}
c\left(x-x^{2}\right), & 0 \leq x \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) Determine c.
(b) Find $\mathrm{E}(X)$.
5. The random variable T has the probability density function

$$
f(t)=\frac{\pi}{4} \cos \left(\frac{\pi t}{2}\right),-1 \leq t \leq 1
$$

Find
(a) $\mathrm{P}(T=0)$;
(b) the interquartile range.
7. The probability density function of the random variable X is given by

$$
f(x)=\left\{\begin{array}{cl}
\frac{k}{\sqrt{4-x^{2}}}, & \text { for } 0 \leq x \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

(a) Find the value of the constant k.
(b) Show that $\mathrm{E}(X)=\frac{6(2-\sqrt{3})}{\pi}$.
(c) Determine whether the median of X is less than $\frac{1}{2}$ or greater than $\frac{1}{2}$.

