Name

Assignment Mathmatical Induction (Divisibility)

Date____

Use mathematical induction to prove that each statement is true for all positive integers.

- 1) $4n^3 + 8n$ is divisible by 6
- 2) $11^n 4^n$ is divisible by 7
- 3) $12n^2 + 20n$ is divisible by 8
- 4) $19n^2 + 7n$ is divisible by 2
- 5) $7n^2 5n$ is divisible by 2
- 6) $6n^2 + 2n$ is divisible by 4
- 7) $9^n 2^n$ is divisible by 7
- 8) $11^n 3^n$ is divisible by 8
- 9) 4 is a factor of $5^n + 3$
- 10) $11^{n} 2^{n}$ is divisible by 9

1) Let P_n be the statement $4n^3 + 8n$ is divisible by 6

Anchor Step

 P_1 is true: $4 \cdot 1^3 + 8$ is divisible by 6

Inductive Hypothesis

Assume that $4k^3 + 8k$ is divisible by 6. Therefore, $4k^3 + 8k = 6r$ for some integer r. **Inductive Step**

We now show that P_{k+1} is true: $4(k+1)^3 + 8(k+1)$ is divisible by 6

 $4(k^{3} + 3k^{2} + 3k + 1) + 8k + 8$ $4k^{3} + 12k^{2} + 12k + 4 + 8k + 8$ $4k^{3} + 8k + 12k^{2} + 12k + 12$ $6r + 12k^{2} + 12k + 12$ $6(r + 2k^{2} + 2k + 2)$

Conclusion

By induction P_n is true for all $n \ge 1$.

2) Let P_n be the statement $11^n - 4^n$ is divisible by 7

Anchor Step

 P_1 is true: $11^1 - 4^1$ is divisible by 7

Inductive Hypothesis

Assume that $11^{k} - 4^{k}$ is divisible by 7. Therefore, $11^{k} - 4^{k} = 7r$ for some integer r. **Inductive Step**

We now show that P_{k+1} is true: $11^{(k+1)} - 4^{(k+1)}$ is divisible by 7

$$\begin{aligned} &11\cdot 11^{k}-4\cdot 4^{k} \\ &7\cdot 11^{k}+11^{k}+11^{k}+11^{k}+11^{k}-4^{k}-4^{k}-4^{k}-4^{k}-4^{k} \\ &7\cdot 11^{k}+11^{k}-4^{k}+11^{k}-4^{k}+11^{k}-4^{k}+11^{k}-4^{k} \\ &7\cdot 11^{k}+7r+7r+7r+7r \\ &7(11^{k}+r+r+r+r) \end{aligned}$$

Conclusion

By induction P_n is true for all $n \ge 1$.

3) Let P_n be the statement $12n^2 + 20n$ is divisible by 8

Anchor Step

 P_1 is true: $12 \cdot 1^2 + 20$ is divisible by 8

Inductive Hypothesis

Assume that $12k^2 + 20k$ is divisible by 8. Therefore, $12k^2 + 20k = 8r$ for some integer r. **Inductive Step**

We now show that P_{k+1} is true: $12(k+1)^2 + 20(k+1)$ is divisible by 8

```
12k^{2} + 24k + 12 + 20k + 20

12k^{2} + 20k + 24k + 32

8r + 24k + 32

8(r + 3k + 4)

Conclusion
```

By induction P_n is true for all $n \ge 1$.

4) Let P_n be the statement $19n^2 + 7n$ is divisible by 2 **Anchor Step** P_1 is true: $19 \cdot 1^2 + 7$ is divisible by 2 Inductive Hypothesis Assume that $19k^2 + 7k$ is divisible by 2. Therefore, $19k^2 + 7k = 2r$ for some integer r. **Inductive Step** $19(k+1)^2 + 7(k+1)$ is divisible by 2 We now show that P_{k+1} is true: $19k^2 + 38k + 19 + 7k + 7$ $19k^2 + 7k + 38k + 26$ 2r + 38k + 262(r+19k+13)Conclusion By induction P_n is true for all $n \ge 1$. 5) Let P_n be the statement $7n^2 - 5n$ is divisible by 2 **Anchor Step** P_1 is true: $7 \cdot 1^2 - 5$ is divisible by 2 **Inductive Hypothesis** Assume that $7k^2 - 5k$ is divisible by 2. Therefore, $7k^2 - 5k = 2r$ for some integer r. **Inductive Step** We now show that P_{k+1} is true: $7(k+1)^2 - 5(k+1)$ is divisible by 2 $7k^2 + 14k + 7 - 5k - 5$ $7k^2 - 5k + 14k + 2$ 2r + 14k + 22(r+7k+1)Conclusion By induction P_n is true for all $n \ge 1$. 6) Let P_n be the statement $6n^2 + 2n$ is divisible by 4 **Anchor Step** P_1 is true: $6 \cdot 1^2 + 2$ is divisible by 4 **Inductive Hypothesis** Assume that $6k^2 + 2k$ is divisible by 4. Therefore, $6k^2 + 2k = 4r$ for some integer r. **Inductive Step** We now show that P_{k+1} is true: $6(k+1)^2 + 2(k+1)$ is divisible by 4 $6k^{2} + 12k + 6 + 2k + 2$ $6k^2 + 2k + 12k + 8$ 4r + 12k + 84(r+3k+2)Conclusion By induction P_n is true for all $n \ge 1$.

7) Let P_n be the statement $9^n - 2^n$ is divisible by 7 **Anchor Step** P_1 is true: $9^1 - 2^1$ is divisible by 7 **Inductive Hypothesis** Assume that $9^k - 2^k$ is divisible by 7. Therefore, $9^k - 2^k = 7r$ for some integer r. **Inductive Step** We now show that P_{k+1} is true: $9^{(k+1)} - 2^{(k+1)}$ is divisible by 7 $9 \cdot 9^k - 2 \cdot 2^k$ $7 \cdot 9^k + 9^k + 9^k - 2^k - 2^k$ $7 \cdot 9^{k} + 9^{k} - 2^{k} + 9^{k} - 2^{k}$ $7 \cdot 9^{k} + 7r + 7r$ $7(9^k + r + r)$ Conclusion By induction P_n is true for all $n \ge 1$. 8) Let P_n be the statement $11^n - 3^n$ is divisible by 8 **Anchor Step** P_1 is true: $11^1 - 3^1$ is divisible by 8 **Inductive Hypothesis** Assume that $11^{k} - 3^{k}$ is divisible by 8. Therefore, $11^{k} - 3^{k} = 8r$ for some integer r. **Inductive Step** $11^{(k+1)} - 3^{(k+1)}$ is divisible by 8 We now show that P_{k+1} is true: $11 \cdot 11^k - 3 \cdot 3^k$ $8 \cdot 11^{k} + 11^{k} + 11^{k} + 11^{k} - 3^{k} - 3^{k} - 3^{k}$ $8 \cdot 11^{k} + 11^{k} - 3^{k} + 11^{k} - 3^{k} + 11^{k} - 3^{k}$ $8 \cdot 11^{k} + 8r + 8r + 8r$ $8(11^{k} + r + r + r)$ Conclusion By induction P_n is true for all $n \ge 1$. 9) Let P_n be the statement 4 is a factor of $5^n + 3$ **Anchor Step** P_1 is true: 4 is a factor of $5^1 + 3$ **Inductive Hypothesis** Assume that 4 is a factor of $5^{k} + 3$. Therefore, $5^{k} + 3 = 4r$ for some integer r. **Inductive Step** We now show that P_{k+1} is true: 4 is a factor of $5^{(k+1)} + 3$ $5 \cdot 5^{k} + 3$ $(4+1) \cdot 5^k + 3$ $4 \cdot 5^{k} + 5^{k} + 3$ $4 \cdot 5^k + 4r$ $4(5^{k}+r)$ Conclusion By induction P_n is true for all $n \ge 1$.

10) Let P_n be the statement $11^n - 2^n$ is divisible by 9 Anchor Step P_1 is true: $11^1 - 2^1$ is divisible by 9 Inductive Hypothesis Assume that $11^k - 2^k$ is divisible by 9. Therefore, $11^k - 2^k = 9r$ for some integer r. Inductive Step We now show that P_{k+1} is true: $11^{(k+1)} - 2^{(k+1)}$ is divisible by 9 $11 \cdot 11^k - 2 \cdot 2^k$ $9 \cdot 11^k + 11^k + 11^k - 2^k - 2^k$ $9 \cdot 11^k + 11^k - 2^k + 11^k - 2^k$ $9 \cdot 11^k + 9r + 9r$ $9(11^k + r + r)$ Conclusion By induction P_n is true for all $n \ge 1$.