SATPREP Assignment: Algebra

- 1. When the function $f(x) = 6x^4 + 11x^3 22x^2 + ax + 6$ is divided by (x + 1) the remainder is -20. Find the value of *a*.
- 2. Find the coefficient of x^7 in the expansion of $(2 + 3x)^{10}$, giving your answer as a whole number.
- 3. The second term of an arithmetic sequence is 7. The sum of the first four terms of the arithmetic sequence is 12. Find the first term, *a*, and the common difference, *d*, of the sequence.
- 4. The sum of the first *n* terms of an arithmetic sequence is $S_n = 3n^2 2n$. Find the *n*th term u_n .

5. Let
$$z = x + yi$$
. Find the values of x and y if $(1 - i)z = 1 - 3i$.

6. Let
$$z_1 = a \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$
 and $z_2 = b \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$.
Express $\left(\frac{z_1}{z_2} \right)^3$ in the form $z = x + yi$.

- 7. Express $\frac{3x-4}{x^2-x}$ in partial fractions.
- 8. Given $f(x) = x^2 + x(2 k) + k^2$, find the range of values of k for which f(x) > 0 for all real values of x.

9. Let
$$z_1 = \frac{\sqrt{6} - i\sqrt{2}}{2}$$
, and $z_2 = 1 - i$.

- (a) Write z_1 and z_2 in the form $r(\cos \theta + i \sin \theta)$, where r > 0 and $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$.
- (b) Show that $\frac{z_1}{z_2} = \cos \frac{\pi}{12} + i \sin \frac{\pi}{12}$.
- (c) Find the value of $\frac{z_1}{z_2}$ in the form a + bi, where a and b are to be determined exactly in radical (surd) form. Hence or otherwise find the exact values of $\cos \frac{\pi}{12}$ and $\sin \frac{\pi}{12}$.
- **10.** Find the largest domain for the function $f: x \mapsto \frac{1}{\sqrt{4-9x^2}}$.
- 11. An arithmetic sequence has 5 and 13 as its first two terms respectively.
 - (a) Write down, in terms of n, an expression for the nth term, a_n .
 - (b) Find the number of terms of the sequence which are less than 400.
- 12. The roots α and β of the quadratic equation $x^2 - kx + (k+1) = 0$ are such that $\alpha^2 + \beta^2 = 13$. Find the possible values of the real number k.