SATPREP

Assignment: Complex Number

1. (a) Express the complex number 8 i in polar form.
(b) The cube root of 8 i which lies in the first quadrant is denoted by z. Express z
(i) in polar form;
(ii) in cartesian form.
2. Solve, for x, the equation $\log _{2}\left(5 x^{2}-x-2\right)=2+2 \log _{2} x$.
3. Consider the equation $(1+2 k) x^{2}-10 x+k-2=0, k \in \mathbb{R}$. Find the set of values of k for which the equation has real roots.
4. The first four terms of an arithmetic sequence are $2, a-b, 2 a+b+7$, and a -3 b , where a and b are constants. Find a and b.
5. Given that $z \in \mathbb{C}$, solve the equation $z^{3}-8 \mathrm{i}=0$, giving your answers in the form $z=r(\cos \theta+\mathrm{i} \sin \theta)$.
6. The polynomial $x^{3}+a x^{2}-3 x+b$ is divisible by $(x-2)$ and has a remainder 6 when divided by $(x+1)$. Find the value of a and of b.
7. Find the values of x for which $|5-3 x| \leq|x+1|$.
8. Consider the complex number $z=\frac{\left(\cos \frac{\pi}{4}-\mathrm{i} \sin \frac{\pi}{4}\right)^{2}\left(\cos \frac{\pi}{3}+\mathrm{i} \sin \frac{\pi}{3}\right)^{3}}{\left(\cos \frac{\pi}{24}-\mathrm{i} \sin \frac{\pi}{24}\right)^{4}}$.
(a) (i) Find the modulus of z.
(ii) Find the argument of z, giving your answer in radians.
(b) Using De Moivre's theorem, show that z is a cube root of one, ie $z=\sqrt[3]{1}$.
(c) Simplify $(1+2 z)\left(2+z^{2}\right)$, expressing your answer in the form $a+b \mathrm{i}$, where a and b are exact real numbers.
9. Find the values of a and b, where a and b are real, given that $(a+b \mathrm{i})(2-\mathrm{i})=5-\mathrm{i}$.
10. $z_{1}=(1+\mathrm{i} \sqrt{3})^{m}$ and $z_{2}=(1-\mathrm{i})^{n}$.
(a) Find the modulus and argument of z_{1} and z_{2} in terms of m and n, respectively.
(b) Hence, find the smallest positive integers m and n such that $z_{1}=z_{2}$.
11. A complex number z is such that $|z|=|z-3 \mathrm{i}|$.
(a) Show that the imaginary part of z is $\frac{3}{2}$.
(b) Let z_{1} and z_{2} be the two possible values of z, such that $|z|=3$.
(i) Sketch a diagram to show the points which represent z_{1} and z_{2} in the complex plane, where z_{1} is in the first quadrant.
(ii) Show that $\arg z_{1}=\frac{\pi}{6}$.
(iii) Find $\arg z_{2}$.
(c) Given that $\arg \left(\frac{z_{1}^{k} z_{2}}{2 \mathrm{i}}\right)=\pi$, find a value of k.
12. The three terms $a, 1, b$ are in arithmetic progression. The three terms $1, a, b$ are in geometric progression. Find the value of a and of b given that $a \neq b$.
13. The complex number z satisfies the equation

$$
\sqrt{z}=\frac{2}{1-\mathrm{i}}+1-4 \mathrm{i} .
$$

Express z in the form $x+\mathrm{i} y$ where $x, y \in \mathbb{Z}$.

