SATPREP Assignment: Complex Number

- 1. (a) Express the complex number 8i in polar form.
 - (b) The cube root of 8i which lies in the first quadrant is denoted by z. Express z
 - (i) in polar form;
 - (ii) in cartesian form.
- 2. Solve, for *x*, the equation $\log_2 (5x^2 x 2) = 2 + 2 \log_2 x$.
- 3. Consider the equation $(1+2k)x^2 10x + k 2 = 0$, $k \in \mathbb{R}$. Find the set of values of k for which the equation has real roots.
- 4. The first four terms of an arithmetic sequence are 2, a b, 2a + b + 7, and a 3b, where a and b are constants. Find a and b.
- 5. Given that $z \in \mathbb{C}$, solve the equation $z^3 8i = 0$, giving your answers in the form $z = r (\cos \theta + i \sin \theta)$.
- 6. The polynomial $x^3 + ax^2 3x + b$ is divisible by (x 2) and has a remainder 6 when divided by (x + 1). Find the value of a and of b.
- 7. Find the values of x for which $|5-3x| \le |x+1|$.

8. Consider the complex number
$$z = \frac{\left(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}\right)^2 \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^3}{\left(\cos\frac{\pi}{24} - i\sin\frac{\pi}{24}\right)^4}.$$

- (a) (i) Find the modulus of z.
 - (ii) Find the argument of *z*, giving your answer in radians.
- (b) Using De Moivre's theorem, show that z is a cube root of one, $ie z = \sqrt[3]{1}$.
- (c) Simplify $(1+2z)(2+z^2)$, expressing your answer in the form a + bi, where a and b are **exact** real numbers.
- 9. Find the values of a and b, where a and b are real, given that (a + bi)(2 i) = 5 i.

- **10.** $z_1 = (1+i\sqrt{3})^m$ and $z_2 = (1-i)^n$.
 - (a) Find the modulus and argument of z_1 and z_2 in terms of *m* and *n*, respectively.
 - (b) Hence, find the smallest positive integers *m* and *n* such that $z_1 = z_2$.
- 11. A complex number z is such that |z| = |z 3i|.
 - (a) Show that the imaginary part of z is $\frac{3}{2}$.
 - (b) Let z_1 and z_2 be the two possible values of z, such that |z|=3.
 - (i) Sketch a diagram to show the points which represent z_1 and z_2 in the complex plane, where z_1 is in the first quadrant.
 - (ii) Show that $\arg z_1 = \frac{\pi}{6}$.
 - (iii) Find arg z_2 .

(c) Given that
$$\arg\left(\frac{z_1^k z_2}{2i}\right) = \pi$$
, find a value of k.

- 12. The three terms a, 1, b are in arithmetic progression. The three terms 1, a, b are in geometric progression. Find the value of a and of b given that $a \neq b$.
- 13. The complex number *z* satisfies the equation

$$\sqrt{z} = \frac{2}{1-i} + 1 - 4i.$$

Express z in the form x + iy where $x, y \in \mathbb{Z}$.