SATPREP Assignment : Complex roots of polynomial

- 1. Let $P(z) = z^3 + az^2 + bz + c$, where $a, b, and c \in \mathbb{R}$. Two of the roots of P(z) = 0 are -2 and (-3 + 2i). Find the value of a, of b and of c.
- 2. (z+2i) is a factor of $2z^3-3z^2+8z-12$. Find the other two factors.
- 3. The polynomial $P(z) = z^3 + mz^2 + nz 8$ is divisible by (z + 1 + i), where $z \in \mathbb{C}$ and $m, n \in \mathbb{R}$. Find the value of *m* and of *n*.

4. (a) Express the complex number 1+i in the form $\sqrt{ae^{i\frac{\pi}{b}}}$, where $a, b \in \mathbb{Z}^+$.

- (b) Using the result from (a), show that $\left(\frac{1+i}{\sqrt{2}}\right)^n$, where $n \in \mathbb{Z}$, has only eight distinct values.
- (c) **Hence** solve the equation $z^8 1 = 0$.
- 5. Consider the polynomial $p(x) = x^4 + ax^3 + bx^2 + cx + d$, where $a, b, c, d \in \mathbb{R}$. Given that 1 + i and 1 - 2i are zeros of p(x), find the values of a, b, c and d.
- 6. Given that 2 + i is a root of the equation $x^3 6x^2 + 13x 10 = 0$ find the other two roots.
- 7. Given that $z_1 = 2$ and $z_2 = 1 + i\sqrt{3}$ are roots of the cubic equation $z^3 + bz^2 + cz + d = 0$ where $b, c, d \in \mathbb{R}$,
 - (a) write down the third root, z_3 , of the equation;
 - (b) find the values of b, c and d;
 - (c) write z_2 and z_3 in the form $re^{i\theta}$.
- 8. Consider the equation $z^3 + az^2 + bz + c = 0$, where $a, b, c \in \mathbb{R}$. The points in the Argand diagram representing the three roots of the equation form the vertices of a triangle whose area is 9. Given that one root is -1 + 3i, find
 - (a) the other two roots;
 - (b) *a*, *b* and *c*.