SATPREP

Assignment: Algebra: Sequence and Series, Logarithm and Exponent

1. Given that $p=\log _{a} 5, q=\log _{a} 2$, express the following in terms of p and/or q.
(a) $\log _{a} 10$
(b) $\log _{a} 8$
(c) $\quad \log _{a} 2.5$
2. Find the sum of the infinite geometric series

$$
\frac{2}{3}-\frac{4}{9}+\frac{8}{27}-\frac{16}{81}+\ldots
$$

3. The first three terms of an infinite geometric sequence are 32,16 and 8 .
(a) Write down the value of r.
(b) Find u_{6}.
(c) Find the sum to infinity of this sequence.
4. Let $\log _{10} P=x, \log _{10} Q=y$ and $\log _{10} R=z$. Express $\log _{10}\left(\frac{P}{Q R^{3}}\right)^{2}$ in terms of x, y and z.
5. In an arithmetic sequence, $u_{1}=2$ and $u_{3}=8$.
(a) Find d.
(b) Find u_{20}.
(c) Find S_{20}.
6. Let $a=\log x, b=\log y$, and $c=\log z$.

Write $\log \left(\frac{x^{2} \sqrt{y}}{z^{3}}\right)$ in terms of a, b and c.
7. In an arithmetic sequence $u_{21}=-37$ and $u_{4}=-3$.
(a) Find
(i) the common difference;
(ii) the first term.
(b) Find S_{10}.
8. Let S_{n} be the sum of the first n terms of an arithmetic sequence, whose first three terms are u_{1}, u_{2} and u_{3}. It is known that $S_{1}=7$, and $S_{2}=18$.
(a) Write down u_{1}.
(b) Calculate the common difference of the sequence.
(c) Calculate u_{4}.

