SATPREP

Assignment: Algebra: Sequence and Series, Logarithm and Exponent

- 1. Given that $p = \log_a 5$, $q = \log_a 2$, express the following in terms of p and/or q.
 - (a) $\log_a 10$
 - (b) $\log_a 8$
 - (c) $\log_a 2.5$
- 2. Find the sum of the infinite geometric series

$$\frac{2}{3} - \frac{4}{9} + \frac{8}{27} - \frac{16}{81} + \dots$$

- **3.** The first three terms of an infinite geometric sequence are 32, 16 and 8.
 - (a) Write down the value of *r*.
 - (b) Find u_6 .
 - (c) Find the sum to infinity of this sequence.

4. Let $\log_{10}P = x$, $\log_{10}Q = y$ and $\log_{10}R = z$. Express $\log_{10}\left(\frac{P}{QR^3}\right)^2$ in terms of x, y and z.

- 5. In an arithmetic sequence, $u_1 = 2$ and $u_3 = 8$.
 - (a) Find d.
 - (b) Find u_{20} .
 - (c) Find S_{20} .
- 6. Let $a = \log x$, $b = \log y$, and $c = \log z$. Write $\log \left(\frac{x^2 \sqrt{y}}{z^3}\right)$ in terms of a, b and c.
- 7. In an arithmetic sequence $u_{21} = -37$ and $u_4 = -3$. (a) Find
 - (i) the common difference;
 - (ii) the first term.
 - (b) Find S_{10} .
- 8. Let S_n be the sum of the first *n* terms of an arithmetic sequence, whose first three terms are u_1 , u_2 and u_3 . It is known that $S_1 = 7$, and $S_2 = 18$.
 - (a) Write down u_1 .
 - (b) Calculate the common difference of the sequence.
 - (c) Calculate u_4 .