SATPREP Assignment: Calculus

1. A gradient function is given by $\frac{dy}{dx} = 10e^{2x} - 5$. When x = 0, y = 8. Find the value of y when x = 1.

2. Let
$$f(x) = e^{-3x}$$
 and $g(x) = \sin\left(x - \frac{\pi}{3}\right)$.

(a) Write down (i) f'(x); (ii) g'(x).

(b) Let
$$h(x) = e^{-3x} \sin\left(x - \frac{\pi}{3}\right)$$
. Find the exact value of $h'\left(\frac{\pi}{3}\right)$.

- 3. The graph of the function y = f(x) passes through the point $\left(\frac{3}{2}, 4\right)$. The gradient function of f is given as $f'(x) = \sin(2x 3)$. Find f(x).
- 4. (a) Find $\int \frac{1}{2x+3} dx$.

(b) Given that
$$\int_0^3 \frac{1}{2x+3} dx = \ln \sqrt{P}$$
, find the value of *P*.

5. Let
$$h(x) = \frac{6x}{\cos x}$$
. Find $h'(0)$.

- 6. Let $f(x) = e^x \cos x$. Find the gradient of the normal to the curve of f at $x = \pi$.
- 7. A particle moves along a straight line so that its velocity, $v \text{ m s}^{-1}$ at time *t* seconds is given by $v = 6e^{3t} + 4$. When t = 0, the displacement, *s*, of the particle is 7 metres. Find an expression for *s* in terms of *t*.
- 8. Let $g(x) = 2x \sin x$. (a) Find g'(x).
 - (b) Find the gradient of the graph of g at $x = \pi$.