SATPREP

Assignment: Trigonometry

1. Let $f(x)=\sqrt{3} \mathrm{e}^{2 x} \sin x+\mathrm{e}^{2 x} \cos x$, for $0 \leq x \leq \pi$. Given that $\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}$, solve the equation $f(x)=0$.
2. Solve $\cos 2 x-3 \cos x-3-\cos ^{2} x=\sin ^{2} x$, for $0 \leq x \leq 2 \pi$.
3. A spring is suspended from the ceiling. It is pulled down and released, and then oscillates up and down. Its length, l centimetres, is modelled by the function $l=33+5 \cos \left((720 t)^{\circ}\right)$, where t is time in seconds after release.
(a) Find the length of the spring after 1 second.
(b) Find the minimum length of the spring.
(c) Find the first time at which the length is 33 cm .
(d) What is the period of the motion?
4. The following diagram shows triangle ABC .

diagram not to scale
$\mathrm{AB}=7 \mathrm{~cm}, \mathrm{BC}=9 \mathrm{~cm}$ and $\mathrm{ABC}=120^{\circ}$.
(a) Find AC.
(b) Find BÂC.
5. The following diagram shows a triangle ABC , where $\mathrm{A} \hat{\mathrm{C}}$ is $90^{\circ}, \mathrm{AB}=3, \mathrm{AC}=2$ and BA C is θ.

(a) Show that $\sin \theta=\frac{\sqrt{5}}{3}$.
(b) Show that $\sin 2 \theta=\frac{4 \sqrt{5}}{9}$.
(c) Find the exact value of $\cos 2 \theta$.
6. (a) Show that $4-\cos 2 \theta+5 \sin \theta=2 \sin ^{2} \theta+5 \sin \theta+3$.
(b) Hence, solve the equation $4-\cos 2 \theta+5 \sin \theta=0$ for $0 \leq \theta \leq 2 \pi$.
7. The diagram below shows triangle $P Q R$. The length of $[P Q]$ is 7 cm , the length of $[P R]$ is 10 cm , and PQ̂R is 75°.

(a) Find PQ̂R.
(b) Find the area of triangle PQR .
8. The straight line with equation $y=\frac{3}{4} x$ makes an acute angle θ with the x-axis.
(a) Write down the value of $\tan \theta$.
(b) Find the value of
(i) $\sin 2 \theta$;
(ii) $\cos 2 \theta$.
9. The diagram below shows a quadrilateral $A B C D$ with obtuse angles $A \hat{B} C$ and $A \hat{D} C$.

diagram not to scale
$\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm}, \mathrm{AD}=4 \mathrm{~cm}, \mathrm{BAC}=30^{\circ}, \mathrm{ABC}=x^{\circ}, \quad \mathrm{ADC}=y^{\circ}$.
(a) Use the cosine rule to show that $\mathrm{AC}=\sqrt{41-40 \cos x}$.
(b) Use the sine rule in triangle ABC to find another expression for AC .
(c) (i) Hence, find x, giving your answer to two decimal places.
(ii) Find AC.
(d) (i) Find y.
(ii) Hence, or otherwise, find the area of triangle ACD.
