## SATPREP

Assignment: Trigonometry

- 1. Let  $f(x) = \sqrt{3}e^{2x} \sin x + e^{2x} \cos x$ , for  $0 \le x \le \pi$ . Given that  $\tan \frac{\pi}{6} = \frac{1}{\sqrt{3}}$ , solve the equation f(x) = 0.
- 2. Solve  $\cos 2x 3 \cos x 3 \cos^2 x = \sin^2 x$ , for  $0 \le x \le 2\pi$ .
- 3. A spring is suspended from the ceiling. It is pulled down and released, and then oscillates up and down. Its length, *l* centimetres, is modelled by the function  $l = 33 + 5\cos((720t)^\circ)$ , where *t* is time in seconds after release.
  - (a) Find the length of the spring after 1 second.
  - (b) Find the minimum length of the spring.
  - (c) Find the first time at which the length is 33 cm.
  - (d) What is the period of the motion?
- 4. The following diagram shows triangle ABC.



diagram not to scale

 $AB = 7 \text{ cm}, BC = 9 \text{ cm} \text{ and } ABC = 120^{\circ}.$ 

- (a) Find AC.
- (b) Find BÂC.
- 5. The following diagram shows a triangle ABC, where  $\hat{ACB}$  is 90°, AB = 3, AC = 2 and  $\hat{BAC}$  is  $\theta$ .



- (a) Show that  $\sin \theta = \frac{\sqrt{5}}{3}$ .
- (b) Show that  $\sin 2\theta = \frac{4\sqrt{5}}{9}$ .
- (c) Find the **exact** value of  $\cos 2\theta$ .

6. (a) Show that 
$$4 - \cos 2\theta + 5 \sin \theta = 2 \sin^2 \theta + 5 \sin \theta + 3$$
.

- (b) Hence, solve the equation  $4 \cos 2\theta + 5 \sin \theta = 0$  for  $0 \le \theta \le 2\pi$ .
- 7. The diagram below shows triangle PQR. The length of [PQ] is 7 cm, the length of [PR] is 10 cm, and PQR is 75°.



- 8. The straight line with equation  $y = \frac{3}{4}x$  makes an acute angle  $\theta$  with the x-axis. (a) Write down the value of  $\tan \theta$ .
  - (b) Find the value of
    - (i)  $\sin 2\theta$ ;
    - (ii)  $\cos 2\theta$ .
- 9. The diagram below shows a quadrilateral ABCD with obtuse angles  $\hat{ABC}$  and  $\hat{ADC}$ .



diagram not to scale

 $AB = 5 \text{ cm}, BC = 4 \text{ cm}, CD = 4 \text{ cm}, AD = 4 \text{ cm}, BAC = 30^{\circ}, ABC = x^{\circ}, ADC = y^{\circ}.$ 

- (a) Use the cosine rule to show that  $AC = \sqrt{41 40 \cos x}$ .
- (b) Use the sine rule in triangle ABC to find another expression for AC.
- (c) (i) Hence, find x, giving your answer to two decimal places.(ii) Find AC.
- (d) (i) Find y.
  - (ii) Hence, or otherwise, find the area of triangle ACD.