SATPREP Assignment: Exponent and Logarithm

- 1. Solve $\log_2 x + \log_2(x-2) = 3$, for x > 2.
- 2. Solve the equation $9^{x-1} = \left(\frac{1}{3}\right)^{2x}$.
- 3. Let $f(x) = \log_3 \sqrt{x}$, for x > 0.
 - (a) Show that $f^{-1}(x) = 3^{2x}$.
 - (b) Write down the range of f^{-1} .
 - Let $g(x) = \log_3 x$, for x > 0.
 - (c) Find the value of $(f^{-1} \circ g)(2)$, giving your answer as an integer.
- $4. \qquad \text{Let } f(x) = k \log_2 x.$
 - (a) Given that $f^{-1}(1) = 8$, find the value of k.
 - (b) Find $f^{-1}\left(\frac{2}{3}\right)$.
- 5. Let $\ln a = p$, $\ln b = q$. Write the following expressions in terms of p and q.
 - (a) $\ln a^3 b$

(b)
$$\ln\left(\frac{\sqrt{a}}{b}\right)$$

6. Let $p = \log_{10} x$, $q = \log_{10} y$ and $r = \log_{10} z$.

Write the expression $\log_{10}\left(\frac{x}{y^2\sqrt{z}}\right)$ in terms of *p*, *q* and *r*.

- 7. Solve the equation $\log_{27} x = 1 \log_{27} (x 0.4)$.
- 8. Find the exact solution of the equation $9^{2x} = 27^{(1-x)}$.
- 9. (a) Given that $\log_3 x \log_3 (x 5) = \log_3 A$, express A in terms of x.
 - (b) Hence or otherwise, solve the equation $\log_3 x \log_3 (x 5) = 1$.