Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS

0580/41
Paper 4 (Extended)
May/June 2023
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	600	2	M1 for $\frac{1250}{12+9+4} \times k$ where $k=1,4,9,12$ oe
1(a)(ii)	80	2	M1 for $1250 \times 64[\div 1000]$
1(a)(iii)	60	2	M1 for $x \times\left(1-\frac{10}{100}\right)=54 \mathrm{oe}$
1(a)(iv)	1000	2	$\text { M1 for } 1250-(1250 \div 5) \text { oe }$ $\text { or B1 for } 250$
1(b)(i)	3.52	2	M1 for [10-] 12×0.54 or B1 for 6.48
1(b)(ii)	0.08	3	B2 for 0.077[4...] or M1 for $0.51 \div 0.826$ If 0 or 1 scored award instead $\mathbf{S C} \mathbf{2}$ for 0.93 final answer OR If 0 scored SC1 for 0.06 as answer
2(a)	$[\sin =] \frac{145}{\frac{1}{2} \times 6.4 \times 5.7 \times 15}$	M2	M1 for $145=\frac{1}{2} \times 6.4 \times 5.7 \times \sin x \times 15$ oe or for $\frac{1}{2} \times 6.4 \times h \times 15=145$ and $\sin x=\frac{h}{5.7}$
	32.0[0]	A1	If M0, SC1 for $145=$ $0.5 \times 6.4 \times 5.7 \times \sin 32 \times 15$ oe
2(b)	$3.4[0]$ or 3.402 to 3.403 nfww	3	M2 for $\sqrt{6.4^{2}+5.7^{2}-2 \times 6.4 \times 5.7 \times \cos (32)}$ OR M1 for $6.4^{2}+5.7^{2}-2 \times 6.4 \times 5.7 \times \cos (32)$ A1 for 11.6 or 11.57 to 11.58
2(c)	3.02 or 3.020 to 3.021	3	M2 for $\sin (32)=\frac{x}{5.7}$ $\sqrt{80^{2}+50^{2}-2 \times 80 \times 50 \times \cos 75}$ or M1 for recognition that the line from E is perpendicular to $A B$ e.g. right angle seen or $\frac{1}{2} \times 6.4 \times h$

Question	Answer	Marks	Partial Marks
2(d)	10.8 or 10.9 or 10.84 to $10.85 \ldots$	4	M3 for $[\sin =] \frac{\text { their }(\mathbf{c})}{\sqrt{15^{2}+5.7^{2}}}$ or $[\tan =] \frac{\text { their }(c)}{\sqrt{\left.(5.7 \times \cos 32)^{2}+15^{2}\right)}}$ or M2 for $15^{2}+5.7^{2}$ or $(5.7 \times \cos 32)^{2}+15^{2}$ oe or M1 for recognition of correct angle
2(e)	136 or 136.0...	3	M2 for $938 \times 145 \times \frac{1000}{1000000}$ oe or M1 for figs 136 or 13601
3(a)(i)	55.87	4	M1 for midpoints soi M1 for use of $\sum f m$ where m is in the correct interval including boundaries M1 (dep on 2nd M1) for $\sum f m \div 1000$
3(a)(ii)	$\frac{177}{500} \text { cao }$	2	M1 for $\frac{154+200}{1000}$ oe
3(b)(i)	25000	1	
3(b)(ii)	2.473×10^{4}	1	
3(c)(i)	166650 or 165816 nfww	3	$\begin{aligned} & \text { M2 for }(500+5) \times \text { ' } 320 \text { to } 340 \text { ' } \\ & \text { or ' } 500 \text { to } 510 \text { ' } \times(320+10) \\ & \text { or M1 for } 500-5 \text { or } 500+5 \text { or } 320-10 \text { or } \\ & 320+10 \end{aligned}$ Alternative method M2 for $504 \times$ ' 320 to 340 ' or ' 500 to 510 ' $\times 329$ or M1 for 504 or 329
3(c)(ii)	285 or 286 nfww	2	M1 for $800-10$
4(a)(i)	96	2	M1 for $\frac{1}{2} \times 24 \times 8$
4(a)(ii)	18.4 or 18.43...	2	M1 for $\tan [x]=\frac{8}{24}$ oe

Question	Answer	Marks	Partial Marks
4(b)	622 or 622.0 to 622.1	2	M1 for $\left[\frac{1}{2} \times\right] \pi \times 6^{2} \times 11$ or $\frac{1}{2} \times \pi \times 6^{2}[\times 11]$
4(c)(i)	246 or 246.2 to 246.3...	5	M4 for $15 \times 20-4 \times 4-\frac{270}{360} \times \pi \times 4^{2}$ oe OR M2 for $\frac{270}{360} \times \pi \times 4^{2}$ oe or M1 for $k \times \pi \times 4^{2}$, where $k \leq 1$ M1 for 15×20 or 4×4 oe
4(c)(ii)	80.8 or 80.9 or 80.84 to $80.85 \ldots$	3	M1 for $15+20+11+16$ oe M1 for $\frac{3}{4} \times 2 \times \pi \times 4$ oe
5(a)(i)(a)	25	1	
5(a)(i)(b)	17 to 18	1	
5(a)(i)(c)	12	2	B1 for 148 seen
5(a)(i)(d)	30	2	B1 for 104 seen
5(a)(ii)(a)	correct diagram or correct for their median and LQ	3	B1 for whiskers at 1 and at 70 B1 for with median and LQ at their (a)(i)(a) and (a)(i)(b) B1 for UQ at 34 Maximum 2 marks if diagram incorrect If 0 scored SC1 for their 5 correct ages plotted
5(a)(ii)(b)	50	1	
5(b)	correct histogram	3	B1 for each correct block width 10 height 3.7 width 20 height 1.2 width 30 height 2 If 0 scored SC1 for correct frequency densities 3.7, 1.2, 2 oe

Question	Answer	Marks	Partial Marks
6(a)	$\begin{aligned} & (5,2) \\ & (2,-2) \end{aligned}$	4	B3 for 3 correct values or answers for C and D reversed or correct coordinates given on diagram wrongly labelled or $\mathbf{B} \mathbf{2}$ for one correct coordinate pair correctly labelled or M2 for A, B, C and D correctly plotted or M1 for A and B correctly plotted If 0 or 1 scored instead award SC2 for answers $(-3,8)$ and $(-6,4)$ or answers $(1.5,1.5)$ and $(-2.5,4.5)$
6(b)(i)	$(2.5,3.5)$ oe	2	B1 for each
6(b)(ii)	7.07 or 7.071...	3	M2 for $(6--1)^{2}+(4-3)^{2}$ oe or M1 for $(6--1)$ or $(4-3)$ oe
6(b)(iii)	$\frac{1}{7}$	2	M1 for $\frac{4-3}{6--1}$ oe
6(b)(iv)	$y=\frac{1}{7} x-\frac{2}{7}$ or $7 y=x-2$ oe final answer	3	M1 for gradient $=$ their (iii) M1dep for substituting $(2,0)$ in a linear equation with their m allow if $(2,0)$ satisfies $y=($ their $(\mathbf{b})(i i i)$ gradient) $x+c$
7(a)(i)	$3(3 y-1)(3 y+1)$ final answer	$\begin{array}{r}3 \\ \\ \\ \\ \hline\end{array}$	B2 for $(9 y-3)(3 y+1)$ or $(3 y-1)(9 y+3)$ or or M1 for $3\left(9 y^{2}-1\right)$ or $[\ldots](3 y-1)(3 y+1)$ if 0 scored SC1 for an otherwise correctly completely factorised expression but with fractions within the brackets
7(a)(ii)	$(2-p)(m+k)$ final answer	2	M1 for $2(m+k)-p(m+k)$ or $m(2-p)+k(2-p)$
7(b)	$-\frac{1}{2} \text { oe nfww }$	5	B4 $-8 x=+4$ oe nfww or $\mathbf{B 3}$ for $\frac{x^{2}-8 x-5}{(x-1)(x+1)}=1$ or better OR B2 $x^{2}-8 x-5$ or M1 for $(x-1)(x-1)-6(x+1)$ or better B1 $(x-1)(x+1)$ as full denominator or on the right hand side

Question	Answer	Marks	Partial Marks
7(c)	$\frac{-(-3) \pm \sqrt{(-3)^{2}-4(4)(-2)}}{2 \times 4} \mathrm{oe}$ or $\frac{3}{8} \pm \sqrt{\left(\frac{3}{8}\right)^{2}+\frac{2}{4}}$ oe	M2	M1 for $\sqrt{(-3)^{2}-4(4)(-2)}$ or for $\frac{-(-3)+\sqrt{q}}{2(4)}$ or $\frac{-(-3)-\sqrt{q}}{2(4)}$ or for $[4]\left(x-\frac{3}{8}\right)^{2}$
	-0.43 and 1.18 final ans cao	A2	B1 for each SC1 for $-0.4,-0.42$ or $-0.425 \ldots$. and 1.2 or 1.17 or $1.175 \ldots$. or answers 0.43 and -1.18 or -0.43 and 1.18 seen in working
7(d)	$k=\frac{4 m}{1-p m} \text { or } k=\frac{-4 m}{p m-1}$ final answer	4	M1 for clearing fractions M1 for collecting terms in k M1 for factorising M1 for dividing by bracket Maximum 3 marks if answer incorrect
8(a)	$\begin{aligned} & y \leqslant 7 \mathrm{oe} \\ & x+y<14 \mathrm{oe} \\ & y>\frac{2}{3} x \mathrm{oe} \end{aligned}$	3	B1 for each
8(b)	$\begin{aligned} & x=4 \text { solid } \\ & y=7 \text { solid } \\ & x+y=14 \text { dashed } \\ & y=\frac{2}{3} x \text { dashed } \end{aligned}$	M4	B1 for each
	correct shading everywhere but region R	A2	M1dep (dependent on M4 or B1B1B1B0 where the only error is wrong use of solid/dashed lines) for shading the correct side of 3 of the 4 lines.

Question	Answer	Marks	Partial Marks
8(c)	4 dresses and 3 shirts	1	
8(d)	106	2	M1 for $10 x+6 y$ evaluated for (x, y) in their region R or $\mathbf{B 1}$ for $(7,6)$ After 0 scored, SC1 for answer 112 or 116
9(a)(i)	r, l, t, e, a	1	
9(a)(ii)	2	1	
9(b)		1	
		1	
9(c)(i)		3	B2 for 7, 6, or 5 sections correct or B1 for 4, 3 or 2 sections correct
9(c)(ii)	5	1FT	strict FT from their diagram
10(a)(i)	-7	1	
10(a)(ii)	$\frac{x-5}{2}$ oe final answer	2	M1 for correct first step e.g. $x=2 y+5$ or $\begin{aligned} & 2 x=y-5 \\ & \text { or } \frac{y}{2}=x+\frac{5}{2} \end{aligned}$
10(a)(iii)	$2 x^{3}-11 x^{2}-8 x+80$ final answer	4	M1 for $(x-4)(2 x+5)(x-4)$ oe B2 for $2 x^{3}-8 x^{2}-8 x^{2}+5 x^{2}-20 x-20 x+32 x+80$ or for simplified 4 term expression of the correct form with 3 terms correct in final answer or B1 for 3 terms correct out of 4 from $x^{2}-4 x-4 x+16$ or $2 x^{2}-8 x+5 x-20$

Question	Answer	Marks	Partial Marks
$10(\mathrm{~b})$	0	$\mathbf{2}$	M1 for g(-2) or $2(x-4)+5$ oe or $3^{x}=1$ or g $(\mathrm{f}(2))=1$

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS

0580/42
Paper 4 (Extended)
May/June 2023
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	111	3	M2 for $180-\frac{180-42}{2}$ oe or $42+$ $\frac{180-42}{2}$ oe or M1 for $\frac{180-42}{2}$ oe
1(b)	150	3	M1 for $k \div(3+4+5)[\times p]$ where $p=1,3,4$ or 5 or $\frac{5}{12}$ oe B1 for 360 used
1(c)	$\frac{3}{5}$ cao nfww	4	B3 for $\frac{72}{120}$ or $\mathbf{B 2}$ for [$d=] 72$ or $[h=] 120$ or M1 for $360 \div 5$ oe isw or $180-(360 \div 6)$ isw or for $(6-2) \times 180[\div 6]$
1(d)	$x+2 x-5+x+20+3 x-40=360$	M1	Accept equivalent equation e.g. $7 x-25=360$
	$7 x=360+5-20+40$ or better	M1	FT their equation, accept e.g. $7 x=385$
	$x=55$	B1	
	55 and 125 or 105 and 75	B1dep	Dep on M1M1B1 Accept $55+3 \times 55-40=180$ or $2 \times 55-5+55+20=180$ If B0 scored, SC1 for 55, 75, 105 and 125
	Opposite angles sum to 180 oe [so $P Q R S$ is a cyclic quadrilateral]	A1	Dep on M1M1B1B1
1(e)	48.7 or 48.69 to 48.70 ...	3	M2 for $\frac{360-50}{360} \times 2 \times \pi \times 9$ oe or M1 for $\frac{50}{360} \times 2 \times \pi \times 9$ oe
2(a)	249.98 to $250[.0 \ldots$]	3	M2 for $830-500 \times 1.16$ or M1 for 500×1.16 OR M1 for $830 \div 1.16$ M1 for (their 715.5...-500) $\times 1.16$

Question	Answer	Marks	Partial Marks
2(b)(i)	33.5 or $33.51 \ldots$	2	M1 for $\frac{12400}{37000}[\times 100]$ oe If 0 scored, $\mathbf{S C 1}$ for answer 66.5 or 66.48 to 66.49
2(b)(ii)	38184 cao	2	M1 for $37000 \times\left(1+\frac{3.2}{100}\right)$ oe or $\mathbf{B 1}$ for 1184
2(c)(i)	441 or 440.6 or 440.64 to 440.65	3	B2 for answer 3941 or 3940.6 or 3940.64 to 3940.65 or M2 for $3500 \times\left(1+\frac{2.4}{100}\right)^{5}-3500$ or M1 for $3500 \times\left(1+\frac{2.4}{100}\right)^{5}$ oe isw
2(c)(ii)	16	3	B2 for $15[.0]$ nfww to 15.1 or M2 for $3500 \times\left(1+\frac{2.4}{100}\right)^{15}$ oe seen or $3500 \times\left(1+\frac{2.4}{100}\right)^{16}$ oe seen or M1 for (3500 or their 3941$) \times\left(1+\frac{2.4}{100}\right)^{n}$ associated with 5000 oe
3(a)(i)	$\frac{(x+3)(2 x+5)}{2}=60$	M1	Accept $(x+3)(2 x+5)=2 \times 60$ or 120 Accept e.g. $(x+3)(x+2.5)=60$ without division by 2 shown for M1 (but not A1)
	$2 x^{2}+6 x+5 x+15$ seen	B1	Accept $2 x^{2}+11 x+15$ seen
	$2 x^{2}+11 x-105=0$	A1	Correct completion after M1B1 with the fraction seen removed with no errors or omissions seen
3(a)(ii)	$(2 x+21)(x-5)[=0]$	M2	M1 for partial factors $\begin{aligned} & 2 x(x-5)+21(x-5)[=0] \\ & \text { or } x(2 x+21)-5(2 x+21)[=0] \end{aligned}$ OR $(2 x+a)(x+b)[=0] \text { where } a b=-105$ $\text { or } 2 b+a=11$
	-10.5 and 5	B1	

Question	Answer	Marks	Partial Marks
3(a)(iii)	61.9 or 61.92 to 61.93	3	M2 for $\tan =\frac{2 \times \text { their } 5+5}{\text { their } 5+3}$ oe or B1FT for $2 \times$ their $5+5$ and their $5+3$
3(b)(i)	28.1 or 28.07 to 28.08	1	FT their 90 - their (a)(iii) unless their (a)(iii) < 45, in which case FT their (a)(iii)
3(b)(ii)	10	3	M2 for $($ their $5+3) \times \sqrt{\frac{93.75}{60}}$ oe or M1 for $\sqrt{\frac{93.75}{60}}$ or $\sqrt{\frac{60}{93.75}}$ oe seen or $\left(\frac{\text { their } 5+3}{x}\right)^{2}=\frac{60}{93.75}$ oe
4(a)(i)	$1.65<h \leq 1.8$	1	
4(a)(ii)	1.63875	4	M1 for midpoints soi M1 for use of $\sum f h$ with h in correct interval including both boundaries M1dep on 2nd M1 for $\sum f h \div 80$
4(b)(i)	$\frac{1}{40} \mathrm{oe}$	1	
4(b)(ii)	$\frac{63}{395} \text { oe }$	3	M2 for $\frac{56}{80} \times \frac{9}{79}[\times 2]$ oe or $\mathbf{B 1}$ for $\frac{56}{80}$ or $\frac{9}{79}$ or $\frac{9}{80}$ or $\frac{56}{79}$ oe seen If 0 or B1 scored, instead award SC2 for answer $\frac{117}{632}$ oe or SC1 for answer $\frac{63}{400}$ oe
4(c)(i)	15, 39, 71, 80	2	B1 for 3 correct or M1 for 1 error in addition with other values then consistent

Question	Answer	Marks	Partial Marks
4(c)(ii)	Correct curve	3	B1 for correct horizontal placement for 5 plots B1FT for correct vertical placement for 5 plots B1FT dep on at least B1 for reasonable increasing curve or polygon through their 5 points If 0 scored SC1 FT for 4 out of 5 points correctly plotted
4(d)(i)	Strict FT their UQ - their LQ	2 dep	B1dep for their UQ or their LQ seen Dep on increasing curve/polygon for 2 marks or B1
4(d)(ii)	Strict FT their reading at 48	2dep	B1 for 48 written
5(a)(i)	251 or 251.3 to 251.4	2	M1 for $\frac{1}{3} \times \pi \times 4^{2} \times 15$ oe
5(a)(ii)	79.5 or 79.51..	5	M3 for $\pi \times 4 \times \sqrt{4^{2}+15^{2}}$ oe or M2 for $\sqrt{15^{2}+4^{2}}$ oe or M1 for $\left[l^{2}=\right] 4^{2}+15^{2}$ oe or $\pi \times 4 \times$ their l M1 for $\frac{\text { their } \text { curved surface area }}{\text { their } \text { curved surface area }+\pi \times 4^{2}}[\times 100]$ oe
5(b)(i)	13 min 20 sec	3	B2 for 800 or $\frac{40}{3}$ oe seen or M1 for figs $3 \div$ figs 375 or figs $3 \div 22500$
5(b)(ii)	0.472 or 0.4715 to $0.4716 \ldots$	3	M2 for $\pi \times 0.45^{2} \times h=0.3$ or $\pi \times 45^{2} \times h=300000$ oe or M1 for $\pi \times$ figs $45^{2} \times h=$ figs 3 oe
6(a)(i)	$\frac{1}{5}, \frac{2}{7}, \frac{3}{9}$ final answer	2	B1 for 2 correct terms isw or for 0.2 and (0.286 or $0.2857 \ldots$) and 0.333...
6(a)(ii)	36	2	M1 for $k=\frac{12(2 k+3)}{25}$ or better

Question	Answer	Marks	Partial Marks
6(b)(i)	$n^{3}+5$ oe final answer	2	B1 for any cubic or common third differences of 6 (at least 2) or for correct answer seen and spoilt
6(b)(ii)	$100 \times 2^{1-n}$ oe final answer	2	B1 for $2^{-n[+k]}$ oe or $\left(\frac{1}{2}\right)^{n[+k]}$ oe in answer or for correct answer seen and spoilt
7(a)	Angle $C A B=52$	B1	
	$180-52-\sin ^{-1}\left(\frac{60 \sin \text { their } 52}{87}\right)$	M3	$\begin{aligned} & \text { M2 for }[\sin [\ldots]=] \frac{60 \sin \text { their } 52}{87} \text { oe } \\ & \text { or M1 for } \frac{60}{\sin B}=\frac{87}{\sin \text { their } 52} \text { oe } \end{aligned}$
	95.08...	A1	
7(b)	77.1 or 77.08 to 77.11	6	B4 for dist travelled $=256.9$ to $257[.0 \ldots]$ or $\mathbf{B 3}$ for $[A B=] 109.9$ to $110[.0 \ldots]$ or M3 for $60+87+$ $\sqrt{60^{2}+87^{2}-2 \times 60 \times 87 \times \cos 95.1} \mathrm{oe}$ or M2 for $\sqrt{60^{2}+87^{2}-2 \times 60 \times 87 \times \cos 95.1} \mathrm{oe}$ or $A B^{2}=12093 \ldots$ to 12097. \ldots or $\frac{87 \sin 95.1}{\sin \text { their } 52}$ oe or M1 for $A B^{2}=60^{2}+87^{2}-2 \times 60 \times 87 \times \cos 95.1$ oe or $\frac{\sin 95.1}{A B}=\frac{\sin \text { their } 52}{87}$ oe M1 for their total distance $\div 3 \frac{20}{60}$ oe
8(a)(i)	Correct expansion of a pair of brackets $\begin{aligned} & x^{2}-4 x+[1] x-4 \\ & \text { or } x^{2}-4 x-2 x+8 \\ & \text { or } x^{2}+[1] x-2 x-2 \end{aligned}$	M1	$\begin{array}{\|l} \text { accept } \\ x^{2}-3 x-4 \\ \text { or } x^{2}-6 x+8 \\ \text { or } x^{2}-[1] x-2 \end{array}$
	$x^{3}-4 x^{2}+x^{2}-4 x-2 x^{2}+8 x-2 x+8$ leading to and stating $[y=] x^{3}-5 x^{2}+2 x+8$	A1	Accept $\begin{aligned} & x^{3}-3 x^{2}-4 x-2 x^{2}+6 x+8 \\ & \text { or } x^{3}-6 x^{2}+[1] x^{2}+8 x-6 x+8 \\ & \text { or } x^{3}-[1] x^{2}-2 x-4 x^{2}+4 x+8 \end{aligned}$ leading to and stating $[y=] x^{3}-5 x^{2}+2 x+8$

Question	Answer	Marks	Partial Marks
8(a)(ii)	Correct labelled sketch positive cubic Crossing x-axis at $-1,2$ and 4 only Crossing y-axis at 8 only		4

Question	Answer	Marks	Partial Marks
9(a)(ii)	$\frac{x^{24} y^{12}}{64}$ final answer	3	B2 for final answer with two correct elements or final answer $\frac{64}{x^{24} y^{12}}$ or $\frac{64^{-1}}{x^{-24} y^{-12}}$ or better or for correct answer seen or B1 for 64 or x^{24} or y^{12} seen in final answer or final answer $\frac{k}{x^{-24} y^{-12}}$ or M1 for first correct step seen eg $\left(\frac{x^{16} y^{8}}{16}\right)^{\left[\frac{3}{2}\right]}$ or $\left(\frac{4}{x^{8} y^{4}}\right)^{[-3]}$ or $\left(\frac{4096}{x^{48} y^{24}}\right)^{\left[-\frac{1}{2}\right]}$
9(b)(i)	$(x+3)(x-3)$ final answer	1	
9(b)(ii)	$\frac{x+3}{2 y+5}$ final answer	3	$\begin{aligned} & \text { M2 for }(x-3)(2 y+5) \\ & \text { or M1 for } 2 y(x-3)+5(x-3) \\ & \text { or } x(2 y+5)-3(2 y+5) \end{aligned}$
9(c)	$5 x^{2}+4 x-20[=0]$ oe or $5 y^{2}-78 y+221[=0] \text { oe }$	M2	M1 for $7-2 x=5 x^{2}+2 x-13$ oe seen or $y=5\left(\frac{7-y}{2}\right)^{2}+2\left(\frac{7-y}{2}\right)-13$ oe seen
	$\frac{-4 \pm \sqrt{(4)^{2}-4(5)(-20)}}{2(5)} \mathrm{oe}$ or $-\frac{4}{10} \pm \sqrt{4+\left(\frac{4}{10}\right)^{2}} \mathrm{oe}$	M2	FT their 3-term quadratic or M1 for $\sqrt{(4)^{2}-4(5)(-20)}$ or better or for $\frac{-4+\sqrt{q}}{2 \times 5}$ or $\frac{-4-\sqrt{q}}{2 \times 5}$ or for $\left(x+\frac{4}{10}\right)^{2}$ oe
	$\begin{aligned} & x=1.64 y=3.72 \\ & \text { and } \\ & x=-2.44 y=11.88 \end{aligned}$	B2	B1 for one correct pair or both x-values correct or both y - values correct

Question	Answer	Marks	Partial Marks
10(a)	13.9 or 13.85 to 13.86	4	M3 for $2 x^{2}=28^{2}-20^{2}$ or better or $x=\left(\sqrt{28^{2}-20^{2}}\right) \sin 45 \mathrm{oe}$ or M2 for $x^{2}+x^{2}+20^{2}=28^{2}$ oe or $\sin 45=\frac{x}{\left.\sqrt{28^{2}-20^{2}}\right)}$ or M1 for any correct Pythag in 2D or their $A C \times \sin 45$ oe dep on trig/Pythagoras attempt for $A C$
10(b)	51.9 or 51.87 to 51.88	4	M3 for $\sin =\frac{29 \text { to } 30}{37+0.5}$ or $\frac{30-0.5}{37 \text { to } 38}$ oe or M2 for correct trig statement for correct angle with values in range 29 to 31 and 36 to 38 or M1 for $30+0.5$ or $30-0.5$ or $37+0.5$ or $37-0.5$ seen or for identifying correct angle $R K M$

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS

0580/43
Paper 4 (Extended)
May/June 2023
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	22.5	2	$\text { M1 for } \frac{9}{14+17+9}[\times 100]$
1(a)(ii)	238	2	FT their $14+17+9=N$ seen in (a)(i) M1 for $\frac{560}{\text { their }(14+17+9)} \times k$, where $k=1,9,14$ or 17
1(a)(iii)	METHOD 1 1.25×195 oe	M2	$\text { M1 for } \frac{25}{100} \times 195$
	243[.75] and No oe	A1	Strict $\mathbf{F T}$ yes if their (a)(ii) >243.75 If M0 scored, then SC1 for 243.75 and a correct conclusion.
	METHOD 2 $\frac{\text { their } 238}{195}-1=0.22 \ldots \text { oe }$	(M2)	M1 for $\frac{\text { their } 238}{195}=1.22 \ldots$ oe
	22[\%] (or better) and No oe	(A1)	Strict FT yes if their (a)(ii) gives answer >25 If M0 scored, then $\mathbf{S C 1}$ for 22.05 and a correct conclusion.
	METHOD 3 $195 \times 0.25=48.75$ oe and their $238-195=43$	(M2)	M1 for 0.25×195
	43 and 48.75 and NO	(A1)	Strict FT yes if their (a)(ii) gives profit >48.75 If M0 scored, then SC1 for 43 and 48.75 and a correct conclusion.
	METHOD 4 $\frac{\text { their } 238}{125} \times 100$	(M2)	$\text { M1 for } x \times\left(1+\frac{25}{100}\right)=\text { their } 238$
	190.4 and NO	(A1)	Strict FT yes if their (a)(ii) gives answer >195 If M0 scored then SC1 for 190.4 and a correct conclusion.
1(b)	56.55	2	M1 for $\frac{725 \times 1.3[\times 6]}{100}$ oe

Question	Answer	Marks	Partial Marks
1(c)	48.5[0]	2	M1 for $x \times\left(1-\frac{24}{100}\right)=36.86$ oe
2(a)(i)	1 3 5 7 8 2 1 1 2 7 8 9 3 1 1 1 8 1\| 7 represents 17 [messages]	3	B2 for fully correct stem-and-leaf diagram OR B1 for two rows correct or for fully correct unordered stem-and-leaf diagram or for a correct diagram with one error or omission B1 for correct key
2(a)(ii)	24.5	1	
2(a)(iii)	$31-\square$	1	
2(a)(iv)	25	1	
2(b)	$\frac{14}{33} \text { oe }$	2	M1 for $\frac{8}{12} \times \frac{7}{11}$
3(a)(i)	118	1	
3(a)(ii)	X is 8.3 cm from B	2	M1 for $(332 \div 200) \times 5$ oe
3(a)(iii)	1:4000	2	M1 for $200 \div 5$ or 200×100, both soi
3(b)	1.13 or 1.128 to 1.129	5	M4 for $4.5 \times \sqrt[3]{\frac{0.385 \times 8000}{195200}}$ oe or $\sqrt[3]{\frac{4.5^{3} \times 0.385 \times 8000}{195200}}$ oe or M3 for $\sqrt[3]{\frac{0.385}{\text { their } 24.4}}$ or $\sqrt[3]{\frac{\text { their } 3080}{195200}}$ or $\frac{0.385}{\text { their } 24.4}=\frac{l^{3}}{4.5^{3}}$ oe or M2 for $\frac{\text { their } 24.4}{0.385}$ or $\frac{0.385}{\text { their } 24.4}$ oe or B2 for 24.4 or 3080 seen or M1 for $195200 \div 8000$ or for 0.385×8000

Question	Answer	Marks	Partial Marks
4(a)	246	3	```B2 for \(B C S(\) outh \()=66\) or \(B C A=48\) and \(A C N\) (orth) \(=66\) or \(B C W(\) est \()=24\) or \(\operatorname{ACS}(\) outh \()=114\) or B1 for \(A B C=66\) or \(B A C=66\) or \(B C A=48\) or \(A C N(\) orth \()=66\)```
4(b)(i)	58	1	
4(b)(ii)	106	1	
4(b)(iii)	47	2	```B1 for \(P R Q=27\) or B1FT for \(S P R\), either \(=48\) or \(=106-\) their \((\mathbf{b})(\mathbf{i})\) or \(\mathbf{B 1 F T}\) for \(R P Q=\) their \(\mathbf{(b)} \mathbf{(i)}-11\)```
4(c)	Radius perpendicular to tangent	1	
	Tangents to circle from a/same point oe	1	
	RHS	1	
	68 angles on a [straight] line add up/sum to 180 oe	1	
	56 [base angles of] isosceles triangle	1	
	$O B C=B O T$ Alternate angles	1	Angles and reason required and dependent on $O B C$ and $B O T$ correct
5(a)(i)	$2[.00]$ or 2.002 to 2.003 nfww	3	M2 for $\sqrt{4.8^{2}+5.6^{2}-2 \times 4.8 \times 5.6 \times \cos 20.4}$ OR M1 for $4.8^{2}+5.6^{2}-2 \times 4.8 \times 5.6 \times$ $\cos 20.4$ A1 for 4.01 [17...] or 4.012
5(a)(ii)	4.1[0] or 4.11 or 4.100 to 4.107 cao	2	M1 for $\tan 64=\frac{A X}{\text { their } \mathbf{(a) (i)}}$ or for $\frac{A X}{\sin 64}=\frac{\text { their } \text { (a)(i) }}{\sin (90-64)}$ oe
5(a)(iii)	6.96	2	M1 for $\frac{1}{2} \times 4.8 \times 2.9$ oe

Question	Answer	Marks	Partial Marks
5(b)	11.3 or 11.31..	5	M4 for $2 \times \frac{8}{\sin (45)} \times \sin 30$ or $\mathbf{B 4}$ for $P M=5.65[685 \ldots]$ or 5.66 or better OR B1 for angle $R P M=45^{\circ}$ M2 for $\frac{8}{\sin (\text { their } 45)} \times \sin 30$ or M1 for implicit form
6(a)(i)	Correct curve	3	B1 for correct horizontal placement for 6 plots B1 for correct vertical placement for 6 plots B1 dep on at least B1 for reasonable increasing curve through their 6 points If 0 scored, $\mathbf{S C 1}$ for 4 out of 6 points correctly plotted
6(a)(ii)(a)	87 to 89.5	1	
6(a)(ii)(b)	12.5 to 14	2	B1 for $[\mathrm{LQ}=] 80.5$ to 81.5 or $[\mathrm{UQ}=] 94$ to 94.5
6(a)(ii)(c)	Strict FT, 200 - their cumul freq reading from their graph at 110 given to nearest integer	2	B1FT for correct cumul freq at 110 seen or for non-integer answer
6(b)(i)	3576	4	M1 for midpoints soi M1 for use of $\sum f x$ where x is in the correct interval including boundaries M1 (dep on $2^{\text {nd }} \mathbf{M 1}$) for $\sum f x \div 50$
6(b)(ii)	53.23	3	B1 for each If 0 scored, SC1 for 3 frequency densities $\frac{12}{600}, \frac{15}{900}, \frac{16}{1500}, \frac{7}{700}$ seen oe to 3 sf or better or multiplier 3 or 300
7(a)	Cubic	1	

Question	Answer	Marks	Partial Marks
7(b)(i)	Correct sketch	2	B1 for one branch correct or an attempt at the correct shape Maximum 1 mark if sketch crosses x axis or y-axis
7(b)(ii)	$\pm \frac{1}{2} \quad \mathbf{n f w w}$	2	M1 for $4 x^{2}=1$ oe or B1 for $\frac{1}{2}$ or $-\frac{1}{2}$ nfww
7(c)(i)	Correct sketch through $(0,0)(180,0)$ and $(360,0)$ with max and min at 1 and -1 resp.	2	B1 for correct sine curve shape, starting at the origin, with minimum of 1 cycle.
7(c)(ii)	$199.5 \text { or } 199.47 \ldots$ and $340.5 \ldots$	3	B2 for one correct or M1 for $\sin x=-\frac{1}{3}$ oe If 0 scored, SC1 for two reflex angles with a sum of 540 or 2 non-reflex angles with a sum of 180
8(a)	$\begin{aligned} & 4 x+3(x+27)=194.75 \\ & \text { or } 4 x+3 x+81=194.75 \end{aligned}$	M1	
	16.25 cao	B2	M1 for $7 x=k$ where $k<194.75$ or B1 for answer 16.3
8(b)	$\begin{aligned} & x^{2}-20 x-69[=0] \text { oe } \\ & \text { or } y^{2}+116 y-861[=0] \text { oe } \end{aligned}$	M2	M1 for $x^{2}+4(-8-5 x)=37$ oe or for $37-4 y=\left(\frac{-8-y}{5}\right)^{2}$ oe or for $x^{2}+4 y=37$ and $20 x+4 y=-32$ subtracted with no more than one error

Question	Answer	Marks	Partial Marks
	$\begin{aligned} & (x+3)(x-23)[=0] \text { oe } \\ & \text { or } \\ & (y-7)(y+123)[=0] \text { oe } \end{aligned}$	M1	correct method to solve their quadratic $\begin{aligned} & \text { e.g. } x=\frac{-(-20) \pm \sqrt{(-20)^{2}-4 \times 1 \times(-69)}}{2 \times 1} \\ & \text { or } x-10= \pm 13 \text { or } x-10= \pm \sqrt{169} \end{aligned}$
	$\begin{array}{ll} x=-3 & y=7 \\ x=23 & y=-123 \end{array} \text { final answer }$	B2	B1 for one correct pair or two correct x values or two correct y values
8(c)	$2 \pi x \times 6 x+2 \pi x^{2}$ or $2 \pi x(6 x+x)$	M2	or M1 for $2 \pi x \times 6 x$ or $2 \pi x^{2}$
	Their $\left(2 \pi x \times 6 x+2 \pi x^{2}\right)=4 \pi r^{2}$	M1	Dep on at least on M1 earned Their LHS must be an area in terms of x only
	At least one further stage of working leading to $r^{2}=\frac{7}{2} x^{2}$	A1	with no error seen
9(a)(i)	311 or 311.0 to 311.1		M2 for $11 \times 11+2 \times \frac{1}{4} \times \pi \times 11^{2}$ oe or M1 for [$2 \times$] $\frac{1}{4} \times \pi \times 11^{2}$ or 11×11 oe
9(a)(ii)	78.6 or 78.55 to $78.56 \ldots$	3	M2 for $4 \times 11+2 \times \frac{1}{4} \times 2 \times \pi \times 11$ oe or M1 for [$2 \times$] $\frac{1}{4} \times 2 \times \pi \times 11$ or 4×11 oe
9(b)	35.2 or 35.3 or $35.239 \ldots$ to 35.28	4	$\mathbf{M 3}$ for $[\tan =] \frac{7}{\sqrt{7^{2}+7^{2}}}$ or $[\sin =] \frac{7}{\sqrt{7^{2}+7^{2}+7^{2}}}$ or $[\cos =] \frac{\sqrt{7^{2}+7^{2}}}{\sqrt{7^{2}+7^{2}+7^{2}}}$ OR M2 for $A G=\sqrt{7^{2}+7^{2}+7^{2}}$ or for $\sqrt{7^{2}+\left(\frac{7}{\sin 45}\right)^{2}}$ oe or for $A C=\sqrt{7^{2}+7^{2}}$ or $\frac{7}{\sin 45}$ oe OR M1 for $7^{2}+7^{2}$ or for implicit trigonometry or identifying correct angle

Question	Answer	Marks	Partial Marks
10(a)	$\begin{array}{llll}-2.5 & -2 & -1\end{array}$	3	B1 for each
10(b)	Correct curve	4	B3 FT for 8 or 7 correct plots B2 FT for 6 or 5 correct plots B1 FT for 4 or 3 correct plots
10(c)	2.3 to 2.4	1	
10(d)	ruled line $y=x-1.5$	M2	M1 for $y=x-1.5$ soi or for $2^{x}-3=x-1.5$ seen. or $y=x+k$ or $y=k x-1.5$ drawn Do not accept $y=-1.5$
	-1 and 1.55 to 1.7	A2	A1 for each
11(a)	10	3	M2 for $(1--7)^{2}+(4--2)^{2}$ oe or M1 for (1--7) or (4--2) oe
11(b)	$\frac{4}{3} \text { or } \frac{8}{6}$	2	M1 for $\frac{1--7}{4-2}$ oe
11(c)	$y=-\frac{3}{4} x-\frac{9}{4}$ or $4 y+3 x+9=0$ oe final answers	4	B3 for $-\frac{3}{4} x-\frac{9}{4}$ OR B1 for midpoint $(1,-3)$ M1 for gradient $-\frac{3}{4}$ or $-\frac{1}{\text { their }(\mathbf{b})}$ M1 for substituting their $(1,-3)$ into $y=($ their $m) x+c$ or for their $m=\frac{y--3}{x-1}$ oe
12(a)	$4 x^{3}-16 x$ cao	2	M1 for $4 x^{3}+k x$ or $k x^{3}-16 x$ or $4 x^{3}-16 x+k$ or $4 x^{3}-16$ as final answers

Question	Answer	Marks	Partial Marks
12b	Their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ or stating $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$	B1	
	Correct method to solve their $4 x^{3}-16 x=0$	M1	e.g. $4 x\left(x^{2}-4\right)$ or $4 x(x-2)(x+2)$ oe
	[$x=] 0,-2,2$	A1	Or B1 for $(-2,-11)$ and $(2,-11)$
	$(0,5)(-2,-11)(2,-11)$	A1	
12(c)	$(0,5)$ with correct reasoning	2	M1 for any of - correct use of $2^{\text {nd }}$ derivative $12 x^{2}$ -16 - evaluates correctly both values of y on either side - evaluates correctly the gradient on either side - reasonable correct sketch

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS

0580/42
Paper 4 (Extended)
February/March 2023
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the February/March 2023 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
$4 \quad$ Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao correct answer only
dep dependent
FT
isw
oe
SC
follow through after error ignore subsequent working or equivalent
nfww
Special Case
soi not from wrong working seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	$\frac{750}{8+7} \times 8 \quad[=400]$	M1	
1(a)(ii)(a)	37.5	1	
1(a)(ii)(b)	275	3	M2 for $250+\frac{250 \times 2 \times 5}{100}$ oe or M1 for $\frac{250 \times 2 \times 5}{100}$ oe
1(a)(iii)	407[.00] cao nfww	3	B2 for 406.5 to 406.7 or M1 for $350 \times\left(1+\frac{0.25}{100}\right)^{60}$ oe isw If 0 scored $\mathbf{S C 1}$ for answer 354 or answer 406
1(b)	24	2	M1 for [C: $\mathrm{D}=] 6: 10$ oe and $[\mathrm{C}: \mathrm{E}=] 6: 9$ oe or for $\frac{6}{6+10+9}[\times 100]$ oe

Question	Answer	Marks	Partial Marks
1(c)	56000 nfww	3	M2 for $60564 \div\left(1+\frac{3}{100}\right) \div\left(1+\frac{5}{100}\right)$ oe or M1 for $[x \times]\left(1+\frac{3}{100}\right) \times\left(1+\frac{5}{100}\right)$ or for $60564 \div\left(1+\frac{3}{100}\right)$ oe or $60564 \div\left(1+\frac{5}{100}\right)$ If 0 scored, $\mathbf{S C 1}$ for answer 65499 to 65500
1(d)	2.5[0] or 2.499...	3	M2 for $\sqrt[8]{\frac{609.20}{500}}$ oe or M1 for $500 \times(\ldots)^{8}=609.2[0]$ oe
2(a)(i)	7	1	
2(a)(ii)	8	1	
2(a)(iii)	8.31	3	M1 for $3 \times 6+32 \times 7+19 \times 8+29 \times 9+11 \times 10+6 \times 11$ oe M1dep on M1 for $\frac{\sum f x}{100}$
2(a)(iv)	$\frac{23}{110} \text { oe }$	2	M1 for $\frac{k}{100} \times \frac{k-1}{99}$ oe, $k<100$ or $\mathbf{B 1}$ for $\frac{46}{100}$ and $\frac{45}{99}$
2(b)(i)	53	1	
2(b)(ii)	20	1	

Question	Answer	Marks	Partial Marks
2(c)(i)	151.975	4	M1 for 80, 155, 250 soi M1 for $\sum f x$ where x is in correct interval including boundaries M1 dep for $\frac{\sum f x}{200}$ dep on second M1
2(c)(ii)	Correct histogram completed with widths 110 to 200 and 200 to 300 and heights 1.1 and 0.41	2	B1 for one correct block If 0 scored, $\mathbf{S C 1}$ for 1.1 and 0.41 seen
3(a)	$[h=] \frac{\frac{1}{2} \times \frac{4}{3} \times \pi \times 3^{3}}{\pi \times 12^{2}}$ oe leading to 0.125 or $3-\frac{\pi \times 12^{2} \times 3-\frac{1}{2} \times \frac{4}{3} \times \pi \times 3^{3}}{\pi \times 12^{2}}$ oe leading to 0.125	M3	M2 for $\pi \times 12^{2} \times h=\frac{1}{2} \times \frac{4}{3} \times \pi \times 3^{3}$ oe or for $\pi \times 12^{2} \times 3=\pi \times 12^{2} \times x+2 / 3 \times \pi \times 3^{3}$ oe or for $\frac{\frac{1}{2} \times \frac{4}{3} \times \pi \times 3^{3}}{\pi \times 12^{2} \times 3}=\frac{h}{3}$ oe or M1 for $\pi \times 12^{2} \times h$ or $\frac{1}{2} \times \frac{4}{3} \times \pi \times 3^{3}$ oe or $\pi \times 12^{2} \times 3$

Question	Answer	Marks	Partial Marks
3(b)	$4.8[0]$ or 4.795 to 4.796	3	M2 for $\pi \times 12^{2} \times(3-0.125)=\pi \times R^{2} \times 18$ oe or $\pi \times 12^{2} \times 3-2 / 3 \times \pi \times 3^{3}=\pi \times R^{2} \times 18$ or B1 for $3-0.125$ or for 414π oe
3(c)	10.5 or 10.47 to 10.49	3	M2 for $\frac{\frac{4}{3} \times \pi \times 3^{3}-30 \times 1.5^{3}}{\frac{4}{3} \times \pi \times 3^{3}}$ or $\frac{30 \times 1.5^{3}}{\frac{4}{3} \times \pi \times 3^{3}} \times 100$ oe or M1 for $\frac{4}{3} \times \pi \times 3^{3}-30 \times 1.5^{3}$ or $\frac{30 \times 1.5^{3}}{\frac{4}{3} \times \pi \times 3^{3}}$ oe
4(a)(i)	Triangle at ($3,-1),(9,-1),(9,2)$	2	B1 for correct shape, size and orientation or for correct plots but no triangle
4(a)(ii)(a)	Triangle at $(3,3),(4,3),(3,5)$	2	B1 for correct shape size and orientation or for rotation about $(4,2) 90^{\circ}$ anticlockwise or for correct plots but no triangle
4(a)(ii)(b)	Triangle at $(4,3),(5,3),(5,5)$	3	B2 for correct shape size and orientation or for correct plots but no triangle or M1 for $x+y=6$ drawn
4(a)(ii)(c)	Reflection $x=4$	2	B1 for each

Question	Answer	Marks	Partial Marks
4(b)	$\frac{5}{7} \mathbf{a}+\frac{2}{7} \mathbf{b}$ final answer	3	B2 for correct unsimplified answer OR M2 for $\overrightarrow{H Z}=\frac{2}{7}(\mathbf{b}-\mathbf{a})$ or $\overrightarrow{K Z}=\frac{5}{7}(\mathbf{a}-\mathbf{b})$ oe or $\mathbf{M 1}$ for $\overrightarrow{H K}=-\mathbf{a}+\mathbf{b}$ or $\overrightarrow{K H}=-\mathbf{b}+\mathbf{a}$ or for a correct route
5(a)	$6 p^{4}-13 p^{2}+6$ final answer	2	B1 for three of $6 p^{4}-9 p^{2}-4 p^{2}+6$ seen
5(b)(i)	175	2	M1 for $\frac{1}{2}(20+30) \times 7$ oe
5(b)(ii)	$\frac{2 s-u t}{t}$ or $\frac{2 s}{t}-u$ final answer	3	B2 for correct answer but unsimplified e.g. $\frac{s \div t}{0.5}-u, \frac{s}{\frac{1}{2} t}-u, \frac{s}{0.5 t}-u$ OR M1 for correct multiplication by 2 or division by 0.5 M1 for correctly rearranging terms to isolate term in v M1 for correct division by t Max 2 marks if final answer incorrect
5(c)(i)	$(2 q-3)(t+2)$ final answer	2	B1 for $t(2 q-3)+2(2 q-3)$ or $2 q(t+2)-3(t+2)$

Question	Answer	Marks	Partial Marks
5(c)(ii)	$x(x+5)(x-5)$ final answer	$\mathbf{3}$	B2 for $\left(x^{2}-5 x\right)(x+5)$ or $\left(x^{2}+5 x\right)(x-5)$ or for correct answer seen then spoiled or $\mathbf{B 1}$ for $x\left(x^{2}-25\right)$
6(a)	$y=4$ oe	$\mathbf{1}$	
6(b)	$[y=]-\frac{1}{2} x+4$ final answer	$\mathbf{2}$	B1 for grad $=-\frac{4}{8}$ oe soi
or $[y=] k x+4$			

Question	Answer	Marks	Partial Marks
7(a)	Completed Venn diagram. ε	2	B1 for two correct values
7(b)(i)	8	1	FT their (a) their $8 \mathrm{dep}<24$
7(b)(ii)	19	1	FT their (a) 24 - their 5 dep on positive answer
7(c)	$\frac{15}{92} \mathrm{oe}$	3	M2 for $[2 \times] \frac{9}{24} \times \frac{\text { their } 5}{23}$ oe or M1 for $\frac{9}{24}$ and $\frac{\text { their } 5}{23}$ or $\frac{\text { their } 5}{24}$ and $\frac{9}{23}$ If 0 scored $\mathbf{S C 1}$ for answer $\frac{5}{32}$ oe
7(d)	$\frac{9}{34} \text { oe }$	2	B1 for $\frac{9}{17}$ seen
8(a)	54	2	$\text { M1 for } \frac{1}{2} \times 12 \times 9$

Question	Answer	Marks	Partial Marks
8(b)	$2 x^{2}+13 x-85[=0]$	B3	M1 for $\frac{1}{2}(2 x+3)(x+5)[=50]$ oe B1 for $2 x^{2}+10 x+3 x+15$
	$\begin{aligned} & \frac{-13 \pm \sqrt{13^{2}-4(2)(-85)}}{2(2)} \mathrm{oe} \\ & \text { or }-\frac{13}{4} \pm \sqrt{\frac{85}{2}+\left(\frac{13}{4}\right)^{2}} \mathrm{oe} \end{aligned}$	M2	M1 for $\sqrt{13^{2}-4 \times 2 \times-85}$ oe or for $\frac{-13+\text { or }-\sqrt{p}}{2(2)}$ oe or for $[2]\left(x+\frac{13}{4}\right)^{2}$
	4.03 cao	B1	
9(a)	-3	3	B2 for $3 x^{2}-6 x$ or B1 for $3 x^{2}-k x$ or for $k x^{2}-6 x$ or for $3 x^{2}-6 x+c$
9(b)	$(0,-4)$ and $(2,-8)$	4	B3 for $x=0$ and 2 or for $(2,-8)$ OR M1 for their $3 x^{2}-6 x=0$ or stating $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ oe M1 for correct method to solve their $3 x^{2}-6 x=0$

Question	Answer	Marks	Partial Marks
9(c)	Correct sketch	2	Max on negative y-axis and min in correct quadrant and extends into first quadrant B1 for positive cubic graph and two turning points
10(a)	$\cos 31=\frac{A B}{12.3} \text { oe }$	M1	
	10.543...	A1	
10(b)	$\cos =\frac{12.3}{16.5} \mathrm{oe}$	M1	
	41.801 to 41.802	A1	
10(c)	16.7 or 16.8 or 16.74 to $16.75 \ldots$	3	M2 for $\sqrt{10.54^{2}+16.5^{2}-2 \times 10.54 \times 16.5 \times \cos (31+41.8)}$ or for $\sqrt{6.33^{2}+11^{2}-2 \times 6.33 \times 11 \times \cos (180-31)}$ OR M1 for $10.54^{2}+16.5^{2}-2 \times 10.54 \times 16.5 \times \cos (31+41.8)$ or for $6.33^{2}+11^{2}-2 \times 6.33 \times 11 \times \cos (90+90-31)$ oe A1 for 280 or 281 or 280.4 to 280.6

Question	Answer	Marks	Partial Marks
10(d)	18.9 to 20.7... nfww	4	M1 for $\sin 31=\frac{B C}{12.3}$ oe or better and $\sin 41.8[0]=\frac{C D}{16.5}$ oe M2dep on M1 for $\cos [D B C]=\frac{\text { their }(c)^{2}+6.34^{2}-10.998^{2}}{2 \times \operatorname{their}(c) \times 6.34}$ or M1dep on M1 for $10.998^{2}=\text { their }(\mathbf{c})^{2}+6.34^{2}-2 \times \text { their }(\mathbf{c}) \times 6.34 \times \cos D B C$
10(e)	2.05 to $2.24 \ldots$ nfww	4	M1 for $\sin 31=\frac{B C}{12.3}$ oe or better or $\sin 41.8[0]=\frac{C D}{16.5}$ oe M2dep on M1 for $\frac{\text { dist }}{\text { their } B C}=\sin ($ their angle $C B D)$ or $\frac{\text { dist }}{\text { their } C D}=\sin ($ their angle $C D B)$ or M1 for recognition of shortest distance
11(a)	1	1	
11(b)	$-\frac{1}{5} \text { or }-0.2$	2	M1 for $2 x-1+3 x+2=0$ oe isw
11(c)	$9 x+8$ final answer	2	M1 for $3(3 x+2)+2$

Question	Answer	Marks	Partial Marks
11(d)	$\frac{4 x^{2}+5 x-3}{x(2 x-1)}$ final answer	4	M1 for $\frac{1}{2 x-1}$ and $3\left(\frac{1}{x}\right)+2$ oe B1 for $x+3(2 x-1)+2 x(2 x-1)$ oe or better isw B1 for common denominator $=x(2 x-1)$ isw If 0 scored, $\mathbf{S C} 1$ for answer $\frac{4 x^{2}+9 x+3}{x(2 x+1)}$
11(e)	$\mathrm{h}(x)$ indicated	1	
12(a)	Correct sketch	2	Condone curve touching asymptotes but not crossing B1 for one section correct or for 3 sections in correct part of graph but with incorrect curvature and no other sections in incorrect part of graph
12(b)	30 and 210 final answer	2	B1 for each If 0 scored SC1 for two answers (one acute and one reflex) with a difference of 180

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	0580/41
Paper 4 Extended	October/November 2022
MARK SCHEME	

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	1580 or 1583 to 1584	2	M1 for $\pi \times 6^{2} \times 14$
1(a)(ii)	452 or 452.3 to 452.4...	2	M1 for $\left[\frac{1}{2}\right] \times \frac{4}{3} \times \pi \times 6^{3}$
1(b)(i)	$7.85 \div 1000[=0.00785]$	M1	
1(b)(ii)	16[.0] or 15.95 to 15.99	2	$\begin{aligned} & \text { FT }\{\text { their }(\mathbf{a})(\mathbf{i})+\text { their }(\mathbf{a})(\mathbf{i i})\} \times 0.00785 \\ & \text { evaluated to } 3 \text { sig fig or better } \\ & \text { M1 for } \\ & (\text { their }(\mathbf{a})(\mathbf{i})+\text { their }(\mathbf{a})(\mathbf{i i})) \times 0.00785 \end{aligned}$
1(c)(i)	16.2 or 16.21 to 16.23	3	M2 for $\frac{2000-50 \times \frac{4}{3} \times \pi \times 2^{3}}{2000}[\times 100]$ or for $\frac{50 \times \frac{4}{3} \times \pi \times 2^{3}}{2000} \times 100$ or M1 for $\frac{50 \times \frac{4}{3} \times \pi \times 2^{3}}{2000}$
1(c)(ii)	6.87 or 6.870 to 6.872	1	$\text { FT } \sqrt[3]{2000-\text { their }\left(50 \times \frac{4}{3} \times \pi \times 2^{3}\right)}$ evaluated to 3 sf or better
1(d)	$\frac{2}{3} \text { oe }$	4	M1 for $[\pi](3 R)^{2}+[\pi] 3 R \times 9 R$ oe M1 for $2[\pi] x^{2}+2[\pi] x \times 7 x$ oe M1 for their area of cone $=$ their area of cylinder seen
2(a)(i)	2990 cao	1	
2(a)(ii)	1.0 cao	1	
2(a)(iii)	2100 cao	1	
2(b)	97	1	
2(c)	$\frac{1}{64}$ final answer	1	
2(d)	$7.01[0] \times 10^{-3}$	1	
2(e)	1.65×10^{x}	2	M1 for final answer figs 165 or for $15 \times 10^{x-1}$ seen or for 0.15×10^{x} seen

Question	Answer	Marks	Partial Marks
2(f)	37.7... -3.7... [=34] oe	M1	
	$\frac{34}{90}$ oe fraction	B1	
3(a)	$-2<x \leqslant 4$ oe	1	
3(b)(i)	$-3 \leqslant x<3$ final answer	3	M2 for $-3 \leq x<k$ or for $k \leqslant x<3$ or for $-6 \leqslant 2 x<6$ or for $-\frac{3}{2}-\frac{3}{2} \leqslant x<\frac{9}{2}-\frac{3}{2}$ or M1 for $-3-3 \leqslant 2 x<9-3$ or for $-\frac{3}{2} \leqslant x+\frac{3}{2}<\frac{9}{2}$ After 0 scored SC 1 for $-3 \leqslant x$ or for $x<3$
3(b)(ii)	$-3,-2,-1,0,1,2$ final answer	2	FT their (i) as long as negative and positive values B1FT for one error or omission
3(c)(i)	$\frac{36}{17} \text { oe }$	4	B3 for $-15 x-2 x=5+4-45$ or better OR B2 for $45-15 x-2 x-4=5$ oe OR M1 for correct removal of fraction or M1 for correct removal of brackets
3(c)(ii)	-8	3	B2 for $5 x-3 x=9-25$ or better or M1 for $5(x+5)=3(x+3)$ oe or better
4(a)(i)	550 nfww	3	M2 for $\frac{500 \times 2 \times 5}{100}+500$ oe or M1 for $\frac{500 \times 2 \times 5}{100}$ oe
4(a)(ii)	546.65	2	M1 for $500 \times\left(1+\frac{1.8}{100}\right)^{5}$ oe
4(a)(iii)	8 nfww	3	B2 for final answer 13 OR M2 for trials correctly comparing both investments to 7 and 8 more years or M1 for at least two trials correctly comparing both investments

Question	Answer	Marks	Partial Marks
4(b)	1476 cao	3	B2 for 1480 or 1476.2 ... OR M1 for $2500 \times\left(1-\frac{10}{100}\right)^{5}$ oe B1 for their more accurate answer seen correctly rounded to the nearest dollar.
4(c)	$3.2[0]$ or 3.200 to 3.201	3	M2 for $(\ldots)=.\sqrt[22]{2}$ oe isw or M1 for $[N] \times(\ldots)^{22}=2[N]$
5(a)(i)	9.4	1	
5(a)(ii)	2.4	2	B1 for [uq =] 10.4 or [lq =] 8 but not as final answer
5(a)(iii)	18	2	B1 for 82 seen
5(b)(i)	$34.65 \text { or } 34 \frac{13}{20}$	4	M1 for midpoints $10,25,32.5,40,52.5$ soi M1 for $\Sigma f x$ where values of x are in interval or on boundary M1 dep on second M for $\frac{\Sigma f x}{150}$
5(b)(ii)	0.3, 5.7, ..., 7.95, 1.5	3	B2 for any two correct or B1 for one correct or for at least three frequency densities seen $0.2,3.8,8,5.3,1$ oe or M1 for [factor] 1.5
5(b)(iii)	$\frac{7}{745} \text { oe }$	2	M1 for $\frac{15}{150} \times \frac{14}{149}$
6(a)(i)	$\binom{-3}{3}$	1	
6(a)(ii)	$\binom{3}{2}$	1	
6(a)(iii)	3.61 or 3.605 to 3.606	2	M1 for $2^{2}+3^{2}$ oe
6(b)	$(6,1)$	2	B1 for each

Question	Answer	Marks	Partial Marks
6(c)	$\frac{2}{7} g+\frac{3}{14} h$	4	B3 for correct unsimplified expression for $\overrightarrow{M K}$ or $\mathbf{B} \mathbf{2}$ for $[\overrightarrow{M K}=] \frac{2}{7} \mathbf{g}+k \mathbf{h}$ or $[\overrightarrow{M K}=] k \mathbf{g}+\frac{3}{14} \mathbf{h}$ or $\overrightarrow{H K}=\frac{2}{7}(\mathbf{g}-\mathbf{h})$ oe or $\overrightarrow{G K}=\frac{5}{7}(\mathbf{h}-\mathbf{g})$ oe or M1 for correct route for $\overrightarrow{M K}$
7(a)(i)	4	1	
7(a)(ii)	16	1	FT $2^{\text {their } 4}$
7(b)	3	1	
7(c)	$\frac{1}{4} \text { oe }$	2	M1 for $\frac{2}{x}=2^{3}$ or better
7(d)	$\frac{5-x}{2}$ oe final answer	2	M1 for $x=5-2 y$ or $y+2 x=5$ oe or $\frac{y}{2}=\frac{5}{2}-x$ oe
7(e)	$\frac{11 x-x^{2}+2}{x}$ final answer	3	B2 for $\frac{x(10-x)+2+x}{x}$ oe single fraction or B1 for $x(10-x)+2+x$ oe or M1 for $10-x+\frac{2}{x}+1$
7(f)	$\begin{aligned} & {[a=] 1} \\ & {[b=]-21} \\ & {[c=] 100} \end{aligned}$	4	B3 for $x^{2}-21 x+100$ OR M1 for $(10-x)^{2}-(10-(10-x))$ oe or better B2 for $\left[(10-x)^{2}\right]=100-10 x-10 x+x^{2}$ or $\mathbf{B 1}$ for three out of four terms of $\left[(10-x)^{2}\right]=100-10 x-10 x+x^{2}$ correct
7 (g)	1024	2	M1 for $[x=] \mathrm{h}(10)$ oe or better
8(a)	$[\cos =] \frac{15^{2}+8^{2}-20^{2}}{2.15 .8}$	M2	M1 for $20^{2}=15^{2}+8^{2}-2.15 .8 \cos ()$
	117.54 to 117.55	A2	$\text { A1 for }-\frac{37}{80} \text { or }-\frac{111}{240} \text { or }-[0] .4625$

Question	Answer	Marks	Partial Marks
8(b)	53.2 or 53.19 to 53.23	2	M1 for $0.5 \times 8 \times 15 \times \sin (117.5)$ oe
8(c)	15.5 or 15.52 to 15.53	2	M1 for $15^{2}+4^{2}$ oe
8(d)	7.1 or 7.13 or 7.125 to 7.126	3	M2 for $\tan [\mathrm{P}]=\frac{4-3}{8}$ oe or for 7.1 or 7.13 or 7.125 to 7.126 seen or M1 for vertical line $=4-3$ soi After 0 scored SC1 for correct angle identified
8(e)	11.5 nfww or 11.48 to 11.49...	5	B1 for height of 3.5 soi M2 for $15^{2}+4^{2}-2.15 .4 \cos (117.5)$ or M1 for $\cos 117.5=\frac{15^{2}+4^{2}-(\ldots)^{2}}{2.15 .4}$ M1 for $\tan =\frac{3.5}{\text { their } 17.216 \ldots}$ oe After M0 scored SC1 for correct angle identified
9(a)(i)	$x(3 x+4)+2(x-1)[=20]$	M1	Correct expression with brackets unexpanded
	Leading to $3 x^{2}+6 x-22=0$ with no errors or omissions	A1	Must see equated to 20 and brackets expanded first to award A1
9(a)(ii)	$\begin{aligned} & \frac{-6 \pm \sqrt{6^{2}-4(3)(-22)}}{2.3} \text { oe } \\ & \text { or for }=-1 \pm \sqrt{1+\frac{22}{3}} \text { oe } \end{aligned}$	B2	B1 for $\sqrt{6^{2}-4(3)(-22)}$ or $\frac{-6+\text { or }-\sqrt{k}}{2.3}$ or $(x+1)^{2}=k$ oe
	-3.887 and 1.887 cao	B2	B1 for one correct answer or for answers -3.89 or -3.88 or -3.886 or -3.8868 to -3.8867 and 1.88 or 1.89 or 1.886 or 1.8867 to 1.8868 or correct answers seen in working or -1.887 and 3.887 answers
9(a)(iii)	5.77 or 5.773 to 5.774	1	FTdep 2(positive $x+1$) evaluated to 3 sig. fig. or more, dep on $x>1$

Question	Answer	Marks	Partial Marks
9(b)	$y^{2}+3 y-40[=0]$ oe	B4	Oe 3 term quadratic M3 for $15 y-20(y-2)=y(y-2)$ oe Or M2 for $\frac{15}{y-2}-\frac{20}{y}=1$ oe Or M1 for $H(y-2)=15$ or $h y=20$ soi
	$(y+8)(y-5)[=0]$ oe	B2	Strict FT a three term quadratic B1FT for $(y+a)(y+b)$ where $a b=-40$ or $a+b=3$ or $\mathrm{y}(\mathrm{y}-5)+8(\mathrm{y}-5)$ or $\mathrm{y}(y+8)-5(y+8)$
	5	B1	
10(a)(i)	4 or 5 or 7 or 8 or 9	1	
10(a)(ii)	[$a=] 3,[b=] 10$	2	B1 for each or for a and b transposed
10(b)	$6 x^{5}-30 x^{4}$	B2	B1 for $6 x^{5}$ or $-30 x^{4}$
	their derivative $=0$.	M1	
	$(0,0)$ and ($5,-3125$)	B2	B1 for ($5,-3125$) or for $x=0$ and $x=5$

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	0580/42
Paper 4 (Extended)	October/November 2022
MARK SCHEME	

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5

Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	75	2	M1 for $\frac{45}{3}[\times k]$ where k is 1,5 or 8
1(a)(ii)	2.332 oe	2	M1 for 2.65 [million] $\times\left(1-\frac{12}{100}\right)$ oe or $\mathbf{B 1}$ for 0.318 [million] seen
1(a)(iii)	23280 cao	2	M1 for $\frac{6.25}{100} \times x=1455$ or better
1(a)(iv)	1450 or 1449 to 1450	3	M2 for $1631=k\left(1+\frac{4}{100}\right)^{3}$ oe or better or B1 for $\left(1+\frac{4}{100}\right)^{3}$ oe seen or M1 for $1631=k\left(1+\frac{4}{100}\right)^{n}, n>0$ oe
1(b)(i)	$\frac{7 x}{2} \text { oe }$	1	
1(b)(ii)	$x+12 \quad \frac{7 x}{2}-26 \text { oe }$ final answer	2	FT their (b)(i) B1 for $x+12$ B1 for their $\frac{7 x}{2}-26$

Question	Answer	Marks	Partial Marks
1(b)(iii)	$\frac{7 x}{2}-26=3(x+12)$ oe leading to 124	4	M1dep for their $\left(\frac{7 x}{2}-26\right)=3 \times$ their $(x+12)$ oe M2dep for isolating x terms, dep on eqn with term in x and constant on each side and with a bracket or fraction. or M1dep for correctly removing brackets or dealing with fractions, dep on eqn with term in x and constant on each side and with a bracket or fraction.
2(a)(i)	28	1	
2(a)(ii)	Correct curve	4	B3FT for 9 or 10 correct points or B2FT for 7 or 8 correct points or B1FT for 5 or 6 correct points
2(a)(iii)	2.5 to 2.88 .2 to 8.5	2	B1 for each value
2(b)(i)	$2 x^{2}+4 x(9-x)$ oe	M1	Accept the sum of individual areas if done in smaller parts
	$2 x^{2}+36 x-4 x^{2}$ oe Leading to $36 x-2 x^{2}$	A1	With intermediate step shown and brackets removed with no errors or omissions
2(b)(ii)	144	3	B1 for $x=6$ identified from graph or using calculus M1 for $36 \times$ their $6-2 \times(\text { their } 6)^{2}$

PUBLISHED

Question	Answer	Marks	Partial Marks
3(a)(i)	211.275	4	M1 for mid-points soi (90, 125, 175, 250, 350) M1 for use of $\Sigma f m$ with m in correct interval including both boundaries M1 for (dep on 2nd M1) for $\Sigma \mathrm{fm} \div 200$
3(a)(ii)	$32 \times 350-32 \times 330$ oe or better, or the reverse of this	M1	
	3.2 or - 3.2 final answer	B1	
3(a)(iii)	$\begin{aligned} & 1.75 \\ & 7.6 \\ & 1.6 \end{aligned}$	3	B2 for two correct heights or $\mathbf{B} 1$ for one correct height or 3 correct frequency densities or M1 for scale factor of 5 or 0.2
3(b)	$\frac{4}{25} \mathrm{oe}$	1	
3(c)(i)	$\frac{39}{995} \text { oe }$	2	M1 for $\frac{40}{200} \times \frac{39}{199}$ oe
3(c)(ii)	$\frac{147}{4975} \text { oe }$	3	M2 for $[2 \times] \frac{84}{200} \times \frac{7}{199}$ oe or $\mathbf{B} \mathbf{1}$ for $\frac{84}{200}$ and $\frac{7}{199}$ or $\frac{84}{199}$ and $\frac{7}{200}$ oe If 0 scored, $\mathbf{S C 1}$ for answer $\frac{147}{5000}$ oe

Question	Answer	Marks	Partial Marks
4(a)(i)	Translation $\binom{7}{-8}$ oe	2	B1 for each
4(a)(ii)	Rotation $(0,8)$	3	B1 for each
4(a)(iii)	Enlargement [sf] $\frac{1}{2}$ oe [centre] $(-1,-4)$	3	B1 for each
4(b)	Image at $(-4,4)(-3,4)(-2,5)(-2,3)(-4,3)$	2	B1 for the line $y=x+8$ drawn soi long enough to be fit for purpose or correct size and orientation but wrong position

PUBLISHED

Question	Answer	Marks	Partial Marks
5(a)(i)	$\frac{14}{18} \text { oe }$	1	
5(a)(ii)	17.5	4	M3 for $\frac{1}{2}(10+24) 18+22 \times 24-134=40 v$ oe or M2 for $\frac{1}{2}(10+24) 18+22 \times 24$ oe or $\mathbf{B 2}$ for [distance covered by bus =] 700 or M1 for correct method for any partial area for the car or for $40 v$
5(b)	$92.8 \text { or } 92 \frac{4}{5}$	3	M1 for $\frac{\text { figs } 162[4]}{\text { their } 10 \min 30 \mathrm{sec}}$ oe M1 for correct conversion to km / h, e.g. $\times \frac{60}{1000}$

Question	Answer	Marks	Partial Marks
6(a)	$-1.5 \text { or }-1 \frac{1}{2} \text { or }-\frac{3}{2}$	2	M1 for $4 x=9-15$ or $x+\frac{15}{4}=\frac{9}{4}$
6(b)	$(a-3)(a+3)$ final answer	1	
6(c)	$\frac{8 c}{3 d}$ final answer	3	B2 for $\frac{8 a c}{3 a d}$ or $\frac{40 c}{15 d}$ or $\frac{4}{1} \times \frac{2 c}{3 d}$ seen or for correct answer seen then spoiled or M1 for $\frac{4 a}{5} \times \frac{10 c}{3 a d}$ or $\frac{8 a c}{10 c} \div \frac{3 a d}{10 c}$ oe
6(d)	$n+1$ final answer	2	M1 for 5×5^{n} or 5^{n+1} seen
6(e)	$(2 x-1)(2 x+5)[=0]$ oe	B2	M1 for $2 x(2 x+5)-[1](2 x+5)[=0]$ or $2 x(2 x-1)+5(2 x-1)[=0]$ or for $(2 x+m)(2 x+n)[=0]$ with and $m n=-5$ or $n+m=4$
	$\frac{1}{2} \text { or } 0.5 \text { and }-2.5 \text { or }-2 \frac{1}{2} \text { or }-\frac{5}{2}$	B1	
6(f)(i)	7	3	M1 for $y=k(x+3)^{3}$ or better M1 for $108=$ their $k(x+3)^{3}$
6(f)(ii)	4	2	M1 for $\left(\frac{1}{2}\right)^{2}$ oe or $\frac{k}{\frac{1}{4} d^{2}}$ oe seen or better

Question	Answer	Marks	Partial Marks
$6(\mathrm{~g})$	$2 x^{3}+7 x^{2}-9$ final answer	$\mathbf{3}$	B2 for correct expansion unsimplified or for simplified 4 term expression of correct form with 3 terms correct or B1 for one pair of brackets expanded with at least 3 terms out of 4 correct
6(h)	$6 x+4$	$\mathbf{2}$	$\mathbf{B 1}$ for $6 x$ or 4 or $6 x+4$ with one extra term seen

PUBLISHED

Question	Answer	Marks	Partial Marks
7(a)(i)	52.[0] or 52.01...	4	M2 for $[\cos P=] \frac{39.4^{2}+46.5^{2}-38.2^{2}}{2 \times 39.4 \times 46.5}$ oe or M1 for $38.2^{2}=39.4^{2}+46.5^{2}-2 \times 39.4 \times 46.5 \times \cos P$ oe A1 for 0.616 or $0.6155 \ldots$
7(a)(ii)	36.6 or 36.64 to 36.65	$\square 3$	M2 for $\frac{d}{46.5}=\sin ($ their 52.01$)$ oe or M1 for recognition that the line from Q is perpendicular to $P R$
7(b)(i)	41 [.0] or 41.01... nfww	3	M2 for $29^{2}+21^{2}+20^{2}$ oe or better or M1 for $29^{2}+21^{2}$ oe or $29^{2}+20^{2}$ oe or $21^{2}+20^{2}$ oe or better
7(b)(ii)	29.2 or 29.18 to 29.2	3	M2 for $\sin [G A C]=\frac{20}{\text { their } A G}$ oe or M1 for angle $G A C$ identified
7(c)	bearing 286	B2	B1 for angle $M L K=49$ or for angle $M K L=35$ correctly identified or angle from North to $M L=106$
	distance 64.6 or $64.59 \ldots$	B3	M2 for $\frac{112 \times \sin (\text { their } 35)}{\sin (96)}$ oe or M1 for the implicit form

Question	Answer	Marks	Partial Marks
8(a)	$(22,11)$	2	B1 for each value
8(b)	$\frac{\text { their } 11-3}{\text { their } 22-2}$ oe or better	M1	
	$-\frac{1}{\text { their } m}$	M1	
	Substitution of $(12,7)$ into $y=($ their $m) x+c$	M1	Accept $y-7=$ their $m(x-12)$ oe
	leading to $2 y+5 x=74$ final answer	A1	Without error or omission
8(c)	32	1	
8(d)	145	2	M1 for $\frac{1}{2} \times($ their $32-3) \times 10$ oe or $\frac{1}{2} \times \sqrt{(7-3)^{2}+(12-2)^{2}} \times \sqrt{(\text { their } 32-7)^{2}+(2-12)^{2}} \mathrm{oe}$

Question	Answer	Marks	Partial Marks
9(a)	Correct sketch to go through $(0,0)$, and $(360,0)$	2	M1 for correct sine curve shape through the origin or for almost correct sketch fitting all tramlines but with an omission at either end or incorrect curvature in one place only
9(b)	```233.1 or 233.13... and 306.9 or 306.86 to 306.87```	3	B2 for one correct angle or M1 for $\sin x=-0.8$ oe If 0 scored $\mathbf{S C 1}$ for 2 reflex angles that add to 540 or two nonreflex angles that add to 180
10(a)	42.05 final answer	2	M1 for $11.4+0.05$ oe or $14.8+0.05$ oe or $15.7+0.05$ oe
10(b)	319 or 318.5 to 318.6	2	M1 for $\frac{150}{360} \times \pi \times 15.6^{2}$ oe
10(c)	$\frac{360-x}{360} \times 2 \pi r+2 r=3\left(\frac{x}{360} \times 2 \pi r+2 r\right)$ oe	M2	M1 for $\frac{x}{360} \times 2 \pi r$ oe seen or $\frac{360-x}{360} \times 2 \pi r$ oe seen
	$\frac{4 x}{360} \times 2 \pi[r]=2 \pi[r]-4[r]$ oe	M1	i.e. M mark for isolating and collecting terms in x
	Leading to $\frac{90(\pi-2)}{\pi}$	A1	With no errors or omissions

Question	Answer	Marks	Partial Marks
11(a)	2.5 and -2.5 oe	3	M2 for $1681 m^{2}=\frac{42025}{4}$ oe or M1 for $(9 m)^{2}+(40 m)^{2}$ oe
11(b)(i)(a)	\mathbf{c} - \mathbf{a} final answer	1	
11(b)(i)(b)	$\frac{3}{4}$ a final answer	1	
11(b)(i)(c)	$\mathbf{c}+\frac{3}{4} \mathbf{a}$ final answer	1	$\mathbf{F T} \mathbf{c}+$ their $(\mathbf{b})(\mathbf{i})(\mathbf{b})$, must be a vector in terms of \mathbf{a} and/or \mathbf{c} in its simplest form
11(b)(ii)	$\mathbf{a}+\frac{4}{3} \mathbf{c} \mathrm{oe}$	2	$\mathbf{B 1}$ for $[\overrightarrow{B Q}=] \frac{1}{3} \mathbf{c}$ or $[\overrightarrow{A Q}=] \frac{4}{3} \mathbf{c}$ or M1 for a correct route or for answer $\mathbf{a}+k \mathbf{c}$ oe, where $k>1$

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS
 0580/43
 Paper 4 (Extended)
 October/November 2022
 MARK SCHEME

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2022 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5

Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	60.9 or 60.86 to 60.87	1	
1(a)(ii)	375	2	M1 for $\frac{250}{12}[\times 18]$ oe
1(a)(iii)	30 nfww	3	M1 for figs $2200 \div 800[\times 12]$ oe M1 for $1500 \div 600[\times 12]$ oe
1(b)(i)	1.92	2	M1 for $k \times\left(1+\frac{25}{100}\right)=2.4[0]$ oe or better
1(b)(ii)	$43.75 \text { or } 43 \frac{3}{4}$	3	M2 for $\left(\left(1+\frac{25}{100}\right) \times\left(1+\frac{15}{100}\right)[-1]\right)[\times 100]$ oe or $\left(1+\frac{25}{100}\right) \times\left(1+\frac{15}{100}\right) \times 100[-100]$ or for $\frac{2.40 \times\left(1+\frac{15}{100}\right)}{\text { their }(\mathbf{b})(\mathbf{i})} \times 100[-100] \mathrm{oe}$ or M1 for $2.40 \times\left(1+\frac{15}{100}\right)$ or $\left(1+\frac{25}{100}\right) \times\left(1+\frac{15}{100}\right)$ oe
1(c)	18 nfww	3	M2 for $\frac{200 \text { to } 210}{11.5-0.25}$ or $\frac{200+5}{11 \text { to } 11.5}$ oe or M1 for $200+5,200-5,11.5+0.25$ or $11.5-0.25$

Question	Answer	Marks	Partial Marks
2(a)(i)	p^{14} final answer	1	
2(a)(ii)	$6 m^{4}$ final answer	2	B1 for $6 m^{k}$ or km^{4} in final answer or correct answer seen and spoilt
2(a)(iii)	$\frac{4}{3 x^{3} y^{9}}$ or $\frac{4 x^{-3} y^{-9}}{3}$ final answer	3	B2 for correct answer seen and spoilt or 2 correct elements in final answer or $\mathbf{B} 1$ for one of $\frac{4}{3}$ or $\frac{3}{4}$ oe or $\boldsymbol{x}^{\mathbf{3}}$ or $\boldsymbol{y}^{\boldsymbol{9}}$ seen
2(b)	3, 12, 27	2	B1 for 12 or 27
2(c)(i)	$3 n+10$ oe final answer	2	B1 for $3 n+k$ oe or $j n+10$ oe $(j \neq 0)$ or for correct expression shown in working and then spoilt
2(c)(ii)	$2 n^{3}+1$ oe final answer	2	B1 for 3rd diff = 12 (both needed) or for cubic answer or for correct expression shown in working and then spoilt
2(d)	38	3	M2 for $3 x=4 \times 23+22$ or M1 for $3 x-22=4 \times 23$ or for $\frac{3 x}{4}=23+\frac{22}{4}$ oe
2(e)	$\begin{aligned} & \frac{-8 \pm \sqrt{8^{2}-4(3)(-20)}}{2 \times 3} \\ & \text { or } \frac{-8}{2 \times 3} \pm \sqrt{\frac{8^{2}}{4 \times 3^{2}}-\frac{(-20)}{3}} \end{aligned}$ or better	B2	B1 for $\sqrt{8^{2}-4(3)(-20)}$ oe or $\frac{-8+\sqrt{q}}{2 \times 3}$ oe or $\frac{-8-\sqrt{q}}{2 \times 3}$ oe or both
	-4.24, 1.57 final answers	B2	B1 for each If $\mathbf{B 0}, \mathbf{S C 1}$ for answers -4.2 or -4.23 or -4.240 to -4.239 and 1.6 or 1.572 to 1.573 or -4.24 and 1.57 seen in working or for -1.57 and 4.24 as final answer

PUBLISHED

Question	Answer	Marks	Partial Marks
3(a)	Correct histogram	3	B1 for each correct block If 0 scored, $\mathbf{S C 1}$ for two of $\frac{28}{15}, \frac{33}{20}, \frac{13}{10}$ or 1.87 or 1.866 to $1.867,1.65,1.3$
3(b)	38.65	4	M1 for $12.5,20,32.5,50,65$ soi M1 for $\sum f x$ where x is in the correct interval including boundaries M1dep for $\sum f x \div 100$
4(a)	Triangle drawn at $(1,-5)$, $(1,-7),(5,-5)$	2	B1 for reflection in any horizontal line If 0 scored, $\mathbf{S C 1}$ for reflection in $x=-2$
4(b)	Triangle drawn at $(-2,0)$, $(-2,-1),(0,-1)$	2	B1 for correct size and orientation but wrong position
4(c)	Rotation 90 [anticlockwise] oe [centre] (-1, 0)	3	B1 for each

PUBLISHED

Question	Answer	Marks	Partial Marks
5(a)	$\left(\frac{(36+50) \times 40}{2}\right) \times 120 \mathrm{oe}$ or $\left(\frac{(0.36+0.5) \times 0.4}{2}\right) \times 1.2 \mathrm{oe}$	M2	M1 for $\frac{(36+50) \times 40}{2}$ oe or $\frac{(0.36+0.5) \times 0.4}{2}$ oe
	$\begin{aligned} & 206400 \div 1000=206.4 \\ & \text { or } 0.2064 \times 1000=206.4 \mathrm{nfww} \end{aligned}$	A1	Must see an explicit conversion
5(b)	5 [minutes] 44 seconds	3	B2 for 344 [seconds] oe 5.73...[mins] or M1 for figs $206.4 \div$ figs 6 oe
5(c)(i)	$28[.0]$ or 27.96 to 27.97	3	M2 for $\left[r^{2}=\right] \frac{\text { figs } 2064}{(\text { figs84 }) \pi}$ or M1 for $\pi r^{2} \times$ figs $84=$ figs 2064
5(c)(ii)	140 cao	2	M1 for $0.6 h=84$ oe ALT method M1 for $\pi \times(\text { their }(\mathbf{c})(\mathbf{i}))^{2} \times h=$ figs $206400 \div 0.6$ oe
5(d)	128 or 127.7 to 127.8	4	B3 for $40^{2}+120^{2}+18^{2}$ oe OR B1 for horizontal length 18 soi M1 for any correct attempt at 2-dimensional Pythagoras' $18^{2}+120^{2}, 120^{2}+40^{2}, 18^{2}+40^{2}$

Question	Answer	Marks	Partial Marks
6(a)(i)	38	2	M1 for $5 \times 3^{2}-7$ oe
6(a)(ii)	$[\pm] \sqrt{\frac{P+7}{5}}$ oe final answer	3	M1 for $P+7=5 k^{2}$ or $\frac{P}{5}=k^{2}-\frac{7}{5}$ M1 for $k^{2}=\ldots \ldots$. FT their first step M1 for square root to final answer Max M2 for incorrect answer
6(b)(i)	$x \geqslant-2.5$ final answer	2	M1 for $-4 x \leqslant 7+3$ or better
6(b)(ii)		1	FT their inequality in (b)(i)
6(c)(i)	$x=2$ broken line	B1	
	$y=32-x$ solid line	B1	
	$2 x+3 y=72$ solid line	B2	B1 for line passing through $(0,24)$ or $(36,0)$
		B2	B1 for region satisfying 3 of the inequalities
6(c)(ii)	$(16,16)$	2	M1 for substitution into $2 x+y$ for any integer point in their region

Question	Answer	Marks	Partial Marks
7(a)(i)	$\frac{1}{15} \mathrm{oe}$	$\mathbf{3}$	M2 for $2 \times \frac{1}{6} \times \frac{1}{5}$ oe or M1 for $\frac{1}{6} \times \frac{1}{5}$ oe or list or indication of 2 correct pairs If 0 scored, $\mathbf{S C} 1$ for answer $\frac{1}{18}$ oe
7(a)(ii)	$\frac{7}{15} \mathrm{oe}$		M2 for $\left(\frac{4}{6} \times \frac{3}{5}\right)+2\left(\frac{1}{6} \times \frac{1}{5}\right)$ oe or $14\left(\frac{1}{6} \times \frac{1}{5}\right)$ oe or $1-2\left(\frac{2}{6} \times \frac{4}{5}\right)$ or M1 for $\left(\frac{4}{6} \times \frac{3}{5}\right)$ or $2\left(\frac{1}{6} \times \frac{1}{5}\right)$ oe or $2\left(\frac{2}{6} \times \frac{4}{5}\right)$ or correct identification of 14 pairs If 0 scored, SC1 for answer $\frac{5}{9}$
7(b)	$\frac{1}{10} \text { oe nfww }$	4	M3 for $6\left(\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}\right)+6\left(\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}\right)$ oe or M2 for $6\left(\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}\right)$ oe or $2\left(\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}\right)$ oe or M1 for $k\left(\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4}\right)$ where k is an integer and $1 \leqslant k \leqslant 12$ but not $k=2$ or $k=6$ or identifies $-2,2$ and 5 or $-3,3$ and 5 as the 3 cards needed If 0 scored, $\mathbf{S C 1}$ for answer $\frac{1}{18}$

PUBLISHED

Question	Answer	Marks	Partial Marks
8(a)	$[\cos B=] \frac{9.5^{2}+7.7^{2}-10^{2}}{2 \times 9.5 \times 7.7} \mathrm{oe}$	M2	M1 for $10^{2}=9.5^{2}+7.7^{2}-2 \times 9.5 \times 7.7 \cos B$ oe or better
	70.206 to 70.207 or 70.21 to 70.22	A2	A1 for $\frac{2477}{7315}$ oe or 0.339 or $0.3386 \ldots$.
8(b)(i)	140.4	1	
8(b)(ii)	19.8	1	FT (180-their (b)(i)) $\div 2$
8(b)(iii)	70.2	1	FT 90 - their (b)(ii)
8(c)	5.31 or 5.314 to 5.315	3	M2 for $\frac{5}{\cos \text { their }(\mathbf{b})(i i)}$ oe or M1 for $\frac{5}{r}=\cos (\operatorname{their}(\mathbf{b})(\mathbf{i i}))$ oe
8(d)	38.8 or 38.9 or 38.78 to 38.85	4	M3 for $\frac{0.5 \times 9.5 \times 7.7 \times \sin 70.2}{\pi \times(\text { their }(\mathbf{c}))^{2}}[\times 100]$ OR M1 for $0.5 \times 9.5 \times 7.7 \times \sin 70.2$ M1 for $\pi \times(\text { their }(\mathbf{c}))^{2}$

Question	Answer	Marks	Partial Marks
9(a)(i)	Correct sketch of $3 x-4 y=12$ with $y=-3$ and $x=4$ indicated on axes	2	B1 for line with positive gradient
9(a)(ii)	Correct sketch of $y=x^{2}-3 x-4$ with $(0,-4)$ indicated as y - intercept and $x=-1$ and $x=4$ indicated as roots Minimum in fourth quadrant, not at $x=0$	4	B3 for correct sketch with one value omitted or incorrect or for a poor sketch with all 3 intercepts correct. or $\mathbf{B 2}$ for roots $x=-1$ and $x=4$ soi with no extra roots or for correct shape with $y=-4$ indicated or B1 for correct shape or for $(x-4)(x+1)$ shown or for incorrect sketch with $(0,-4)$ indicated as y-intercept

Question	Answer	Marks	Partial Marks
9(a)(iii)	Correct sketch of $y=6^{x}$ with y-intercept indicated at $(0,1)$	$\mathbf{2}$	B1 for increasing exponential graph seen on both sides of the y-axis.
9(b)(i)	$8-4 x^{2}[+0]$	$\mathbf{2}$	B1 for two terms correct and one extra incorrect term or for one of two terms correct or for correct answer seen and spoilt
9(b)(ii)	4	$\mathbf{2}$	$\mathbf{M 1 ~ f o r ~ s u b s t i t u t i o n ~ o f ~} x=-1$ into their (b)(i)

Question	Answer	Marks	Partial Marks
10(a)(i)	2a drawn correctly with direction arrow	1	
10(a)(ii)	$\mathbf{a - b}$ drawn correctly with direction arrow	2	B1 for $\binom{4}{-3}$ seen or implied or M1 for correctly drawing their $\mathbf{a}-\mathbf{b}$ with an arrow
10(b)(i)(a)	$\mathbf{q}+\frac{3}{4} \mathbf{p}$ final answer	1	
10(b)(i)(b)	$\mathbf{q}-\frac{1}{4} \mathbf{p}$ final answer	2	M1 for a correct route
10(b)(i)(c)	$\frac{13}{24} \mathbf{p}-\frac{2}{3} \mathbf{q}$ final answer	3	M2 for $\frac{3}{8} \mathbf{p}-\frac{2}{3}($ their $(\mathbf{b})(\mathbf{i})(\mathbf{b}))$ oe or for $-\frac{3}{8} \mathbf{p}-\mathbf{q}+\mathbf{p}+\frac{1}{3}($ their $(\mathbf{b})(\mathbf{i})(\mathbf{b}))$ oe or M1 for a correct route or for $\overrightarrow{[B N}=]-\frac{2}{3}(\operatorname{their}(\mathbf{b})(\mathbf{i})(\mathbf{b}))$ or $[\overrightarrow{A N}=] \frac{1}{3}(\operatorname{their}(\mathbf{b})(\mathbf{i})(\mathbf{b}))$ or final answer $k \mathbf{p}-\frac{2}{3} \mathbf{q}$ oe or $\frac{13}{24} \mathbf{p}-k \mathbf{q}$ oe
10(b)(ii)	$\frac{19}{16} \mathbf{p}$ oe final answer	2	M1 for $\overrightarrow{A G}=\frac{3}{8} \mathbf{p} \div 2$ soi or for answer $k \mathbf{p}$ oe

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	0580/41
Paper 4 (Extended)	May/June $\mathbf{2 0 2 2}$
MARK SCHEME	

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most
Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2 :

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviation	Meaning
\mathbf{M}	Method marks - for a correct method applied to appropriate numbers.
\mathbf{A}	Accuracy marks - depend on M marks. Hence M0 A1 is not possible.
\mathbf{B}	Independent of method marks - for a correct final answer, a partially correct answer or a correct intermediate stage.
$\mathbf{S C}$	Marks given in special cases only when indicated in mark scheme.
FT	Work can be followed through after an error.
isw	Ignore subsequent working (after correct answer obtained)
cao	Correct answer only
nfww	Not from wrong working
oe	Or equivalent
soi	Seen or implied
eeo	Each error or omission
dep	Dependent on the previous mark(s)

Question	Answer										Marks	Partial Marks
1(a)(i)	1	7	7	8	8	9	9				2	B1 for one row correctly ordered or for fully correct unordered stem-and-leaf diagram or for a correct diagram with one error or omission
	2	1	1	1	1	2	3	3		5		
1(a)(ii)	21										1	
1(a)(iii)	23										1	
1(a)(iv)	48										2	$\text { M1 for } \frac{2}{15}[\times 360] \text { or } \frac{360}{15}[\times 2]$
1(b)(i)	120										1	
1(b)(ii)	130										1	
1(b)(iii)	60										1	
1(c)(i)	93.4										4	M1 for mid-values soi M1 for $\Sigma f x$ M1 dep on second M for $\Sigma f x \div 200$
1(c)(ii)	19										2	M1 for $\frac{86}{50}$ or $\frac{114}{60}$

Question	Answer	Marks	Partial Marks
2(a)	42	$\mathbf{2}$	M1 for $12 \div 2$ or better
2(b)(i)	5.72	$\mathbf{2}$	M1 for $\frac{100-12}{100} \times 6.50$ oe
or B1 for 0.88 oe			

Question	Answer	Marks	Partial Marks
2(c)	4	2	M1 for $\frac{100+2.5}{100} \times[\ldots]=\frac{100+6.6}{100}$ oe
2(d)(i)	72.3 or 72.31...	2	M1 for $80 \times\left(\frac{100-2}{100}\right)^{5}$ oe
2(d)(ii)	4 nfww	3	B2 for answer 9 nfww or M2 for correct trials with values giving either side of 67 or M1 for $80 \times\left(\frac{100-2}{100}\right)^{n}=67$ or their $(i) \times\left(\frac{100-2}{100}\right)^{k}=67$ or an evaluated trial with $n \geqslant 6$ or $k \geqslant 1$

Question	Answer	Marks	Partial Marks
3(a)(i)	6	$\mathbf{3}$	B2 for $4 x+6=30$ or better or M1 for $x+x+7+2 x-1[=30]$
3(a)(ii)	21	$\mathbf{3}$	M2 for $(555-$ their $x \times 15-$ their $(x+7) \times 18) \div$ their $(2 x-1)$
3(b)(i)	8	or M1 for their $x \times 15$ or their $(x+7) \times 18$	

Question	Answer	Marks	Partial Marks
3(c)(i)	$[p=] \frac{1}{2} \text { oe }[q=] 1$	2	B1 for each If zero scored, SC1 for 2 values satisfying one of the original equations
3(c)(ii)	$\begin{aligned} & {[u=] 30 \text { and } 150} \\ & {[v=] 0 \text { and } 360} \end{aligned}$	4	B1 for each OR SC1 for $\sin u=$ their p and $\cos v=$ their q SC1 if their two different angles for u sum to 180 or if their different two angles for v sum to 360

Question	Answer	Marks	Partial Marks
4(a)(i)	3	$\mathbf{1}$	
4(a)(ii)	7	$\mathbf{1}$	FT their (i) $3 \times$ their $(\mathrm{i})-2$
4(b)	$\frac{x+2}{3}$ oe final answer	$\mathbf{2}$	M1 for $y+2=3 x$ or $\frac{y}{3}=x-\frac{2}{3}$ or $x=3 y-2$
4(c)	25	$\mathbf{2}$	M1 for $\frac{1}{x}=5^{-2}$ oe
4(d)	$\frac{2 x^{2}-x-1}{x}$ final answer	$\mathbf{2}$	M1 for $2 x-1-\frac{1}{x}$
4(e)	2.98×10^{17} or $2.980 \ldots \times 10^{17}$	$\mathbf{1}$	$\mathbf{2}$
4(f)	625	M1 for $x=\mathrm{j}(4)$	

PUBLISHED

Question	Answer	Marks	Partial Marks
5(a)(i)(a)	$\frac{(8-2) \times 180}{8 \times 2} \text { oe }$	M2	M1 for $\frac{(8-2) \times 180}{8}$ or $\frac{360}{8}$ or $\frac{(2 \times 8-4) \times 90}{8}$
5(a)(i)(b)	174 or 173.8....	4	M3 for $\frac{1}{2} \times 6 \times O M$ oe or $\frac{1}{2} \times(O A)^{2} \times \sin 45$ oe or $\frac{1}{2} \times 6 \times O A \times \sin 67.5$ oe where $O A$ and $O M$ are as in the M2 or M2 for $O M=3 \times \tan 67.5$ oe or for $O A=\left(\frac{3}{\cos 67.5}\right)$ or $\frac{6 \times \sin 67.5}{\sin 45}$ oe or M1 for $\frac{O M}{3}=\tan 67.5$ oe or for $\frac{3}{O A}=\cos 67.5$ oe or for $\frac{\sin 45}{6}=\frac{\sin 67.5}{O A}$ oe
5(a)(ii)	193 or 193.0 to 193.1	3	M2 for $\pi \times\left(\frac{3}{\cos 67.5}\right)^{2}$ oe or M1 for $\frac{3}{r}=\cos 67.5 \quad$ or $\quad \frac{\sin 45}{6}=\frac{\sin 67.5}{r}$

PUBLISHED

Question	Answer	Marks	Partial Marks
5(b)(i)	1.27 or 1.272 to 1.273	2	$\begin{aligned} & \text { M1 for }\left[\frac{1}{2} \times\right] \pi \times 0.45^{2} \times 4 \\ & \quad \text { or } \frac{1}{2} \times \pi \times 0.45^{2}[\times 4] \end{aligned}$
5(b)(ii)	742 or 743	6	M5 for a method leading to the volume of water $\begin{array}{ll}\text { e.g. } & 4 \times\left\{2 \times \frac{i n v \cos \left(\frac{0.15}{0.45}\right)}{360} \times \pi \times 0.45^{2}\right. \\ & \left.-\frac{1}{2} \times 0.45^{2} \times \sin \left(2 i n v \cos \left(\frac{0.15}{0.45}\right)\right)\right\} \text { oe }\end{array}$ OR M2 $[2 \times] \frac{\operatorname{inv\operatorname {cos}(\frac {0.15}{0.45})}}{360} \times \pi \times 0.45^{2}$ oe or $[2 \times] \frac{90-i n v \cos \left(\frac{0.15}{0.45}\right)}{360} \times \pi \times 0.45^{2}$ oe or M1 for use of $\frac{\theta}{360} \times \pi \times 0.45^{2}$ oe M2 for $\frac{1}{2} \times 0.45^{2} \times \sin \left(2 i n v \cos \left(\frac{0.15}{0.45}\right)\right)$ oe or $\frac{1}{2} \times 0.15 \times 0.45 \times \sin \left(i n v \cos \left(\frac{0.15}{0.45}\right)\right)[\times 2]$ oe

Question	Answer	Marks	Partial Marks
5(b)(ii)			or M1 for use of $\frac{1}{2} \times 0.45^{2} \times \sin \theta$ oe or $[2 \times] \frac{1}{2} \times 0.15 \times 0.45 \times \sin \beta$ If 0 scored, SC1 for inveos $\left(\frac{0.15}{0.45}\right)$ or invsin $\left(\frac{0.15}{0.45}\right)$ or $\sqrt{0.45^{2}-0.15^{2}}$ soi
6(a)(i)	-3	1	
6(a)(ii)	$\begin{aligned} & -1 \\ & 1.55 \text { to } 1.6 \\ & 4.4 \text { to } 4.45 \end{aligned}$	3	B1 for each
6(a)(iii)	-8	1	
6(a)(iv)	Ruled line through origin intersecting curve once	2	B1 for ruled line through origin
6(b)(i)	18	3	B2 for $6 x-12$ or B1 for $6 x$ or -12
6(b)(ii)	$(2,-5)$	2	B1 for each. If 0 scored, M1 for their $6 x-12=0$ or states $\frac{d y}{d x}=0$
6(c)	$\begin{aligned} & {[p=] 7} \\ & {[q=] 3} \end{aligned}$	2	B1 for each

PUBLISHED

Question	Answer	Marks	Partial Marks
7(a)	39.6 or $39.57 \ldots$	4	M2 for $[\cos =] \frac{14^{2}+12^{2}-9^{2}}{2 \times 14 \times 12}$ or M1 for $9^{2}=14^{2}+12^{2}-2 \times 14 \times 12 \times \cos A C D$ A1 for $0.7708 \ldots$ or 0.771 or $\frac{37}{48}$ oe
7(b)	$\frac{14 \sin 25}{\sin 123}$	M2	M1 for $\frac{\sin 123}{14}=\frac{\sin 25}{B C}$ oe
	7.054...	A1	
7(c)	3.74 or 3.735 to 3.739	3	M2 for $7.05 \times \sin 32$ or M1 for recognition that the line from B is perpendicular to $A C$
7(d)	11.8 or 11.83 to 11.85	4	M1 for $32+\operatorname{their}(\mathrm{a})$ soi M2 for $\begin{aligned} & 12^{2}+7.05^{2}-2 \times 12 \times 7.05 \times \cos (\text { their }(a)+32) \\ & \text { or M1 for } \cos (\text { their }(a)+32)=\frac{12^{2}+7.05^{2}-B D^{2}}{2 \times 12 \times 7.05} \end{aligned}$
7(e)	309.6 or 309.57...	2	FT $270+$ their (a) M1 for $270+\operatorname{their}(a)$ oe

Question	Answer	Marks	Partial Marks
8(a)(i)	$A \cap B$	1	
8(a)(ii)		2	B1 for each
8(b)(i)	$\frac{9}{11}$	1	
8(b)(ii)	$\frac{36}{121} \text { oe }$	3	M2 for $2 \times \frac{2}{11} \times \frac{9}{11}$ oe or M1 for $\frac{2}{11} \times \frac{9}{11}$ oe If 0 scored SC1 for $\frac{36}{110}$
8(c)(i)	3, 5, 28, 14 correctly placed	2	B1 for 28 in the intersection
8(c)(ii)	$\frac{28}{50} \text { oe }$	1	FT their 28 where their $28<50$
8(c)(iii)	$\frac{123}{175} \text { oe }$	2	M1 for $\frac{42}{50} \times \frac{41}{49}$
8(c)(iv)	$\frac{63}{88} \text { oe }$	2	FT their 28 M1 for $\frac{\text { their } 28}{33} \times \frac{\text { their } 28-1}{32}$

Question	Answer	Marks	Partial Marks
9(a)	$x^{2}-x-30[=0]$	B3	M1 for $(2 x+1)(x-1)-x^{2}=29$ oe B1 for $(2 x+1)(x-1)=2 x^{2}-2 x+x-1$ oe soi
	$(x-6)(x+5)$ oe	M1	or correct factors for their 3 term quadratic equation or for correct substitution into quadratic formula or correctly completing the square for their 3 term quadratic equation
	$x=6$ cao	B1	
	12 or $2 \times$ their x evaluated or $k=2 x$ stated	B1 FT	
9(b)(i)	$(y+1)^{3}-y^{3}=5$ oe	M1	
	$(y+1)^{3}=y^{3}+3 y^{2}+3 y+1$ soi	B2	B1 for $(y+1)^{2}=y^{2}+y+y+1$ oe soi
	Completion to $3 y^{2}+3 y-4=0$	A1	With no errors or omissions
9(b)(ii)	$\frac{-3 \pm \sqrt{3^{2}-4(3)(-4)}}{2 \times 3}$	B2	or B1 for $\sqrt{3^{2}-4(3)(-4)}$ or for $\frac{-3+\sqrt{\ldots}}{2 \times 3}$ or $\frac{-3-\sqrt{\ldots}}{2 \times 3}$
	0.44	B2	B1 for 0.758 or $0.7583 \ldots$

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	0580/42
Paper 4 (Extended)	May/June $\mathbf{2 0 2 2}$
MARK SCHEME	

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2022 series for most
Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	150	2	B1 for answer $150 k$ or M1 for prime factors of 30 or 75 seen or a list of multiples of both 30 and 75 with at least 3 of each or for $\frac{30 \times 75}{15}$ oe or for answer $2 \times 3 \times 5^{2}$
1(b)	$\begin{aligned} & 152 \\ & 190 \\ & 266 \end{aligned}$	3	Accept in any order B2 for two correct answers or $\mathbf{M 1}$ for $\frac{608}{4+5+7} \times k$ oe where $k=1,4,5,7$
1(c)	$\begin{aligned} & 2.61 \times 10^{-2} 2.61 \times 10^{-2} \text { or } \\ & 2.608 \ldots \times 10^{-2} \end{aligned}$	2	B1 for figs 2608 or 261 seen If 0 scored, SC1 for answer $2.6[0] \times 10^{-2}$ without more accurate value in standard form seen
1(d)	$\frac{27}{99}$ oe fraction	1	
1(e)	2.8	1	
	$\mathrm{g} / \mathrm{cm}^{3}$ or $\mathrm{g} \mathrm{cm}^{-3}$	1	
2(a)	$P Q R=90$ angle in semi-circle	B1	
	$P R Q=61$ angle sum of triangle [$=180$]	B1	
	$P S Q=61$ angle in same segment	B1	If 0 scored $\mathbf{S C 1}$ for $P S Q=P R Q[=61]$ soi
2(b)	57	4	B1 for $A B T=98$ B1 for $T A B$ or $A T B=41$ B1 for $B T C=41$ or $T B C=82$ or $A T C=82$ soi
3(a)	8.25 or 8.246...	3	M2 for $(3--5)^{2}+(2-4)^{2}$ oe or better or M1 for $(3--5)$ and $(2-4)$ oe seen
3(b)	$[y=] 4 x+7$	5	B1 for [midpoint] $(-1,3)$ soi M1 for [gradient of $l=] \frac{4-2}{-5-3}$ oe M1 for gradient $-1 /$ their $\left(-\frac{1}{4}\right)$ M1dep on at least M1 for their $(-1,3)$ substituted into $y=$ their $m \times x+c$ oe

\begin{tabular}{|c|c|c|c|}
\hline Question \& Answer \& Marks \& Partial Marks \\
\hline 3(c) \& \((0,-8)\) and \((0,16)\) \& 4 \& \begin{tabular}{l}
B3 for \((0,-8)\) or \((0,16)\) or for -8 and 16 OR \\
B2 for distance \(=[\pm] 12\) soi or M1 for \(13^{2}-(5[-0])^{2}\) oe B1 for both answers \((0, k), k \neq 0\) or 4 \\
ALT METHOD \\
B3 for \((0,-8)\) or \((0,16)\) or for -8 and 16 OR \\
M2 for \(y^{2}-8 y-128[=0]\) or for \((y-4)^{2}=144\) or better or M1 for \(13^{2}=(-5-0)^{2}+(4-y)^{2}\) oe \\
B1 for both answers \((0, k), k \neq 0\) or 4
\end{tabular} \\
\hline 4(a) \& 7.06 or \(7.058 \ldots\) or 7.059 \& \[
3
\] \& \begin{tabular}{l}
M2 for \(\sqrt{6.4^{2}+10.9^{2}-2 \times 6.4 \times 10.9 \times \cos 38}\) oe \\
OR \\
M1 for \(6.4^{2}+10.9^{2}-2 \times 6.4 \times 10.9 \times \cos 38\) oe A1 \(=49.8 \ldots\)
\end{tabular} \\
\hline 4(b)(i) \& 97 \& 1 \& \\
\hline 4(b)(ii) \& 15.3[0...] \& 3 \& M2 for \([A B=] \frac{10.9 \times \sin \text { their } 97}{\sin 45}\) or M1 for \(\frac{\sin \text { their } 97}{A B}=\frac{\sin 45}{10.9}\) oe \\
\hline 4(c) \& 72.8 to \(72.81 \ldots\) \& 3

\square \& M2 for $\frac{1}{2}(6.4) \times 10.9 \times \sin 38+\frac{1}{2}$ their $15.3 \times 10.9 \times \sin 38$ oe or M1 for $\frac{1}{2} \times 6.4 \times 10.9 \times \sin 38$ oe or $\frac{1}{2} \times$ their $15.3 \times 10.9 \times \sin 38$ oe or M1 for height $=10.9 \times \sin 38$ oe

\hline 5(a) \& Correct lines drawn \& 2 \& B1 for one correct with no incorrect lines

\hline 5(b)(i)(a) \& Translation or translate $\binom{-1}{4}$ oe \& 2 \& B1 for each

\hline 5(b)(i)(b) \& | Rotation or rotate |
| :--- |
| 90 [anticlockwise] oe [centre] $(2,1)$ | \& 3 \& B1 for each

\hline 5(b)(ii)(a) \& Triangle at $(-5,6)(-2,6)(-2,5)$ \& 2 \& B1 for reflection in $y=k$

\hline
\end{tabular}

Question	Answer	Marks	Partial Marks
5(b)(ii)(b)	Triangle at (1,5$)(1,7)(7,7)$	2	B1 for correct size and orientation, wrong position
6(a)	42028	2	M1 for $\frac{380}{500}$ oe soi isw
6(b)	$\frac{47}{66} \text { oe }$	4	0.712[1...] M3 for $2\left(\frac{5}{12} \times \frac{4}{11}\right)+2\left(\frac{4}{12} \times \frac{3}{11}\right)+2\left(\frac{5}{12} \times \frac{3}{11}\right)$ oe or $1-\left(\frac{5}{12} \times \frac{4}{11}+\frac{4}{12} \times \frac{3}{11}+\frac{3}{12} \times \frac{2}{11}\right)$ oe or M2 for sum of 3 or more correct product pairs and no incorrect pairs or for $\frac{5}{12} \times \frac{4}{11}+\frac{4}{12} \times \frac{3}{11}+\frac{3}{12} \times \frac{2}{11}$ and no other pairs or M1 for $\frac{k}{12} \times \frac{j}{11}$ seen If 0 scored SC1 for answer $\frac{94}{144}$ oe
6(c)	52	2	M1 for $x \times \frac{100-16}{100}=43.68$ oe or better
6(d)(i)	70 or $70.16[5 \ldots]$ or 70.17 or 70.2	3	$\begin{aligned} & \text { M2 for } \frac{29750 \text { to } 29800}{400+25} \text { or } \frac{29750 \text { to } 29800}{400+24} \text { or } \\ & \frac{29800-50}{400 \text { to } 425} \end{aligned}$ or B1 for 29750 or 29850 or 29849 or 375 or 425 or 424 seen
6(d)(ii)	$\begin{aligned} & 2399 \\ & \text { or } 2400 \text { nfww } \end{aligned}$	2	B1 for 27450 or 27550 or 27549 or 29850 or 29849 seen
7(a)	25.2 or $25.23 \ldots$	4	M1 for midpoints soi M1 for use of $\sum f x$ with x in correct interval including both boundaries $\text { M1 (dep on } 2^{\text {nd }} \text { M1) for } \sum f x \div 150$
7(b)	5 correct blocks	4	B3 for 4 correct blocks or B2 for 3 correct blocks or B1 for 2 correct blocks or block widths $10,10,5,15,10$ If 0 scored SC1 for 4 correct frequency densities from 1.2, 3.8, 6.4, 3.33[3...] and 1.8 oe soi
7(c)(i)	12, 50, 82, 132, 150	2	B1 for 3 or 4 correct

Question	Answer	Marks	Partial Marks
7(c)(ii)	92	2	M1 for 150-12 oe seen If 0 scored, SC1 for answer 8[\%]
8(a)	$\frac{1}{2} \text { or } 0.5 \text { oe }$	2	M1 for $10-3=11 p+3 p$ oe or better
8(b)	$[m=] \frac{2 k}{c^{2}-g}$ oe final answer	3	M1 for correctly isolating m terms M1 for correctly factorising M1 for dividing by a bracket with two terms to the final answer Maximum mark M2 if final answer incorrect
8(c)	$0 \quad 4.5$ oe	5	B4 for $2 x^{2}-9 x[=0]$ or $9 x-2 x^{2}[=0]$ or better OR M2 for $(2 x+3)+4(x-3)=(x-3)(2 x+3)$ or better or M1 for $(2 x+3)+4(x-3)$ seen oe or common denominator $(x-3)(2 x+3)$ oe B1 for $2 x^{2}-6 x+3 x-9$ or better seen
8(d)	$\begin{aligned} & y^{2}-10 y+21[=0] \text { or } \\ & x^{2}-4 x-12[=0] \end{aligned}$	M2	M1 for $y^{2}+5(12-2 y)=39$ oe or $5 x+\frac{(12-x)^{2}}{2^{2}}=39$ seen oe
	$\begin{aligned} & (y-3)(y-7)[=0] \\ & \text { or }(x+2)(x-6)[=0] \end{aligned}$	M1	or for correct factors for their 3- term quadratic equation or for correct substitution into quadratic formula or correctly completing the square for their 3term quadratic equation
	$\begin{array}{ll} x=-2 & y=7 \\ x=6 & y=3 \end{array}$	B2	$\begin{aligned} & \text { B1 for } x=-2, x=6 \\ & \text { or for } y=7, y=3 \end{aligned}$ $\text { or for one correct pair of } x \text { and } y \text { values }$
8(e)	$2 x^{3}+x^{2}-54 x+72$ final answer	3	B2 correct expansion of three brackets unsimplified or for final answer of correct form with 3 out of 4 terms correct or B1 correct expansion of two brackets with at least three terms out of four correct
9(a)	$P M R=M S R=$ right angle[s] or 90°	B1	
	$P R M=M R S$ same angle	B1	
	AAA oe $\begin{aligned} & \mathrm{OR} \\ & M P R=S M R \quad 3 \mathrm{rd} \text { angle of triangle } \end{aligned}$	B1	Dep on B1B1 and no errors seen

Question	Answer	Marks	Partial Marks
9(b)(i)	5.5	$\mathbf{2}$	M1 for $\frac{x}{4.5}=\frac{9.9}{8.1}$ oe
9(b)(ii)	16.7 or 16.73 to 16.74	M1 for $25 \times\left(\frac{8.1}{9.9}\right)^{2}$ oe	
or $25 \times\left(\frac{4.5}{\text { their } 5.5}\right)^{2} \quad$ oe			

Question	Answer	Marks	Partial Marks
12(a)	$3 x^{2}-2 k x$	M2	M1 for $3 x^{2}$ or $-2 k x$
	$\text { their } \frac{\mathrm{d} y}{\mathrm{~d} x}=6$	M1	Dep on at least M1 for derivative
	$x=2 \text { substituted in their } \frac{\mathrm{d} y}{\mathrm{~d} x}$	M1	Dep on at least M1 for derivative
	Correct working leading to 1.5 oe	A1	A0 if any errors in working leading to 1.5
12(b)	$(0,1)(1,0.5)$	4	B3 for $x=0$ and $x=1$ or for $(1,0.5)$ OR M1 for their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ B1 for $3 x^{2}-3 x$ oe or better
12(c)	correct sketch	2	with max on positive y-axis and min in 1st quadrant B1 for positive cubic or for graph with one max which is on pos y-axis and one min which is in 1st quadrant

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	0580/43
Paper 4 (Extended)	May/June 2022
MARK SCHEME	

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2022 series for most
Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	1007	1	
1(b)	123	2	M1 for $1030-827$ soi or $1030-852+25$ soi or $25+50+48$
1(c)	$25.2,25 \frac{1}{5}$	2	M1 for figs $29.4 \div 70[\times 60]$ oe
1(d)	\$142.1[0] cao	4	M2 for [adults $=$] $56 \div 8 \times 5$ and [child $=$] $56 \div 8 \times 3$ or better or M1 for $56 \div(5+3) \times k$ where $k=1,3$ or 5 M1 for their $35 \times 2.80+$ their $21 \times 2.80 \times$ $\frac{3}{4}$ oe
2(a)(i)	Triangle drawn at $(2,-1)$, $(2,-4),(3,-4)$	2	B1 for two correct points If 0 scored, SC1 for reflection of triangle T in $y=-x$
2(a)(ii)	Triangle drawn at $(-5,6)$, $(-2,5),(-5,5)$	2	B1 for translation by $\binom{-1}{k}$ or by $\binom{k}{3}$ If 0 scored SC1 for triangle drawn at $(-4.5,3.5),(-4.5,4.5)$ and $(-1.5,3.5)$
2(a)(iii)	Enlargement [SF] - 1.5 oe [centre] $(0,3)$	3	B1 for each
2(b)	$28.8,28 \frac{8}{10}, 28 \frac{4}{5}$	2	M1 for 1.2^{2} oe
3(a)(i)(a)	$187 \text { or } 186.7 \text { to } 186.8 \text { or } 186 \frac{42}{53}$	1	
3(a)(i)(b)	2:7:42 cao	2	B1 for 106:371: 2226 or any equivalent ratio If 0 scored, $\mathbf{S C 1}$ for $2: 7: 42$ in the wrong order
3(a)(ii)	33.3 or 33.28 to 33.29	2	M1 for $\frac{2967-2226}{2226}[\times 100]$ oe or $\frac{2967}{2226} \times 100[-100]$ oe

Question	Answer	Marks	Partial Marks
3(a)(iii)	1706 cao nfww	3	B2 for 1705 to $1706.0 \ldots$ or 1710 or M1 for $\left(1+\frac{30.48}{100}\right) x=2226$ oe or better If 0 or M1 scored, SC1 for rounding their decimal answer seen to nearest integer
3(b)	3897	5	B1 for $a=2000$ M2 for $[b=] \sqrt[3]{\frac{2662}{2000}}$ or M1 for $2662=2000 b^{3}$ M1 for their $2000 \times\left(\sqrt[3]{\frac{2662}{\text { their } 2000}}\right)^{7}$ or for their $a \times(\text { their } b)^{7}$ provided their a and their b are clearly identified in the working If 0 or M1 scored, SC1 for rounding their decimal answer seen to nearest integer.
4(a)	$\begin{aligned} & \frac{(12-2) \times 180}{12}[=150] \text { oe } \\ & \text { or } 180-\frac{360}{12}[=150] \end{aligned}$	1	Accept $\frac{(2 \times 12-4) \times 90}{12}[=150]$
4(b)(i)	$\frac{3}{\cos 75}$ oe or $\frac{6 \sin 75}{\sin 30}$	M2	M1 for $\frac{3}{A O}=\cos 75$ oe or $\frac{r}{\sin 75}=\frac{6}{\sin 30}$
	11.59...	A1	
4(b)(ii)(a)	72.8 or 72.9 or 72.82 to $72.89 \ldots$	2	M1 for $2 \times \pi \times 11.6$
4(b)(ii)(b)	12.1 or 12.06 to 12.08	2	M1 for [6+] their (b)(ii)(a) $\div 12$ oe
4(c)	806 or 807 or 805.9 to 807.4	3	B2 for 402.9... to 403.7 OR M2 for $\frac{1}{2} \times 6 \times 11.6 \times \sin 75 \times 12 \times 2$ oe or M1 for $\frac{1}{2} \times 6 \times 11.6 \times \sin 75[\times k]$ oe
5(a)(i)	$20<t \leqslant 35$	1	

Question	Answer	Marks	Partial Marks
5(a)(ii)	28 nfww	4	M1 for midpoints soi M1 for use of $\sum \mathrm{f} m$ with m in correct interval including both boundaries M1 (dep on $2^{\text {nd }} \mathrm{M}$) for $\sum f m \div 80$
5(b)(i)	$\frac{7}{8} \text { cao }$	2	M1 for $\frac{18+28+24}{80}$ oe
5(b)(ii)	$\frac{25}{126} \text { oe }$	3	M2 for $[2 \times]\left(\frac{3}{28} \times \frac{25}{27}\right)$ or $[2 \times]$ $\left(\frac{25}{28} \times \frac{3}{27}\right)$ oe or M1 for either $\frac{3}{28}$ or $\frac{25}{27}$ or $\frac{25}{28}$ or $\frac{3}{27}$ If 0 scored, SC1 for answer $\frac{75}{392}$ oe
5(c)(i)	28 and 56	1	
5(c)(ii)	Correct diagram	3	B1FT their (c)(i) for plots at 5 correct heights B1 for 5 plots at upper ends of intervals on correct vertical line B1FT (dep on at least B1) for increasing curve or polygon through 5 points After 0 scored, SC1FT for 4 correct points plotted
5(c)(iii)	Strict FT their reading at $80^{\text {th }}$ percentile for an increasing curve/polygon	2	B1 for 64 written or a mark at cf $=64$ on graph or a mark on curve at $(t, 64)$
5(c)(iv)	Correct integer reading at $t=45$	M1	FT their cf graph for all three marks
	$\begin{aligned} & \frac{80-(\text { their reading at } t=45)}{80}[\times 100] \\ & \text { or } \frac{(\text { their readingat } t=45)}{80} \times 100 \end{aligned}$	M1	
	Percentage consistent with their reading	A1	If no working shown then SC 1 for a correct percentage that follows from a correct reading from their graph.
6(a)	$5 b-2 a$ final answer	2	B1 for $5 b$ or $-2 a$ in final answer or for $5 b-2 a$ seen
6(b)	$6 x-23$ final answer nfww	2	M1 for $4 x-20$ or $-3+2 x$

Question	Answer	Marks	Partial Marks
6(c)	$\frac{35-x}{2 x(x-5)}$ or $\frac{35-x}{2 x^{2}-10 x}$ oe final answer nfww	3	B1 for 3(2x) $-7(x-5)$ or better isw B1 for $2 x(x-5)$ as common denominator isw, allow expanded
6(d)	-5	3	M1 for $13-4 x=18-3 x$ oe or $\frac{-4 x}{3}+x=6-\frac{13}{3}$ oe M1FT for $-4 x+3 x=18-13$ oe or for $\frac{-x}{3}=\frac{5}{3}$
6(e)	$[x=] \frac{5 p}{y+10}$ oe final answer	4	M1 for correctly clearing the x from the denominator M1 for correctly expanding the brackets or (dealing with the 5 correctly throughout) M1 for correctly isolating terms in x M1 for correctly factorising and dividing by the bracket Max 3 marks if answer is incorrect
7(a)	87.[0] or 86.98 to 86.99	3	M2 for $\sqrt{82^{2}+55^{2}-2 \times 82 \times 55 \times \cos 76}$ oe OR M1 for $82^{2}+55^{2}-2 \times 82 \times 55 \times \cos 76$ oe A1 for 7570 or 7566 to 7567
7(b)	66.1 or 66.2 or 66.13 to 66.17	3	M2 for $\frac{82 \times \sin 76}{\text { their (a) }}$ oe or M1 for $\frac{82}{\sin C}=\frac{\text { their }(\mathbf{a})}{\sin 76}$ oe
7(c)	13.3 or 13.30 to 13.31	3	M2 for $A G=55 \cos 76$ oe or M1 for recognition that $C G$ is perpendicular to $A B$

Question	Answer	Marks	Partial Marks
7(d)	54.1 or $54.13 \ldots$ and 125.9 or 125.86 to 125.87	5	B4 for 54.1 or $54.13 \ldots$ or 125.9 or 125.86 to 125.87 M3 for $[\sin Q=] \frac{0.5 \times 82 \times 55 \times \sin 76}{0.5 \times 90 \times 60}$ oe or M2 for $0.5 \times 82 \times 55 \times \sin 76=0.5 \times 60 \times 90 \times$ $\sin Q$ oe or M1 for $0.5 \times 82 \times 55 \times \sin 76$ oe or for $0.5 \times 60 \times 90 \sin Q=$ their area of $A B C$ If B4 not scored then $\mathbf{S C 1}$ for two angles seen that sum to 180 (from use of sine ratio) but not 0 and 180.
8(a)(i)	$(-0.5,1)$	2	B1 for each
8(a)(ii)	$\binom{7}{-3}$	2	B1 for each
8(a)(iii)	7.62 or 7.615 to 7.616	2	FT their (a)(ii) M1 for $(\text { their } 7)^{2}+(\text { their }-3)^{2}$ oe
8(a)(iv)	$[y=]-4 x-1$ final answer	3	B2 for answer $-4 x+c$ [oe] or for correct equation in different form or for $-4 x+-1$ or for $-4 m-1$ OR M1 for $\frac{-5-7}{1--2}$ oe M1 for correct substitution shown of $(-2,7)$ or $(1,-5)$ or their $(-0.5,1)$ into $y=($ their $m) x+c$ oe OR M1 for $7=-2 m+c$ and $-5=m+c$ A1 for $m=-4$ and $c=-1$
8(a)(v)	$[y=] \frac{1}{4} x+\frac{11}{4}$ final answer	3	M1 for grad $=\frac{1}{4}$ oe nfww soi, FT negative reciprocal of their gradient from (iv) M1 for correct substitution shown of $(5,4)$ into $y=($ their $m) x+c$ oe or, if no substitution shown, $(5,4)$ satisfies their final linear equation.

Question	Answer	Marks	Partial Marks
9(b)(ii)	$9-2 x-3 x^{2}=0$ oe	B3	B2 for $9-2 x-3 x^{2}$ or B1 for two correct terms M1 for their derivative $=0$ or stating $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
	$\frac{--2 \pm \sqrt{(-2)^{2}-4 \times-3 \times 9}}{2 \times-3}$ oe OR $-\frac{1}{3} \pm \sqrt{\frac{9}{3}+\left(\frac{1}{3}\right)^{2}}$ oe	B2	FT their derivative B1FT for $\sqrt{(-2)^{2}-4(-3)(9)}$ or better or for $\frac{-(-2)+\sqrt{q}}{2 \times-3}$ or $\frac{-(-2)-\sqrt{q}}{2 \times-3}$ OR B1 for $\left(x+\frac{1}{3}\right)^{2}$
	-2.10 and 1.43 final answer	B2	B1 for each or for answers -2.1 or $-2.097 \ldots$ and 1.4 or 1.430 to 1.431 or SC1 for $-2.097 \ldots$ and $1.43[0]$ to 1.431 seen in working or for -1.43 and 2.10 as final answer
9(b)(iii)	$\begin{aligned} & {[a=]-6} \\ & {[b=] 17} \end{aligned}$	3	B2 for either a correct or b correct or for [$a=$] -5.04 or -5.049 to -5.05 and [$b=$] 16.9 \ldots seen or M1 for substitution of one of their solutions into $9+9 x-x^{2}-x^{3}$ oe or SC1 for reversed answers, $a=17$, $b=-6$
10(a)	20.8 or 20.76 to 20.79	4	B3 for [$B C=$] 10.4 or 10.38 to $10.39 \ldots$ or $6 \sqrt{3}$ oe or M2 for $(2 x)^{2}+x^{2}+6^{2}=24^{2}$ oe or M1 for $24^{2}-6^{2}$ oe or $x^{2}+6^{2}$ oe or $(2 x)^{2}+6^{2}$ oe, or $x^{2}+(2 x)^{2}$ oe or SC2 for final answer of $12 \sqrt{5}$ or 26.8 or 26.83... OR M3 for $x^{2}+\left(\frac{x}{2}\right)^{2}+6^{2}=24^{2}$ oe or M2 for $x^{2}+\left(\frac{x}{2}\right)^{2}$ or M1 for $x^{2}+6^{2}$ oe or $\left(\frac{x}{2}\right)^{2}+6^{2}$ oe or $24^{2}-6^{2}$ oe

Question	Answer	Marks	Partial Marks
$10(\mathrm{~b})$	14.5 or 14.47 to 14.48	$\mathbf{3}$	M2 for $\sin [\ldots]=\frac{6}{24}$ oe
			or M1 for recognising the correct angle $G A C$

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	0580/42
Paper 4 (Extended)	February/March 2022
MARK SCHEME	

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the February/March 2022 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	184	2	M1 for $\frac{852-300}{300}[\times 100]$ oe or for $\frac{852}{300} \times 100[-100]$ oe
1(b)	497	2	M1 for $\frac{852}{5+7} \times k$ oe where $k=1,5$ or 7
1(c)(i)	Forty thousand six hundred	1	
1(c)(ii)	4.06×10^{4}	1	
1(d)	435	3	M2 for $3000 \times\left(1-\frac{48}{100}-\frac{3}{8}\right)$ oe or B2 for 2565 , or 1440 and 1125 or 1875 and 1440 or 1560 and 1125 or M1 for $1-\frac{48}{100}-\frac{3}{8}$ or $3000 \times\left(\frac{48}{100}+\frac{3}{8}\right)$ oe or B1 for 1440 or 1125 or 1560 or 1875 If 0 scored $\mathbf{S C 1}$ for answer 975
1(e)	35.7	3	M2 for $\frac{100+15}{100} \times \frac{100+18}{100}[-1]$ oe or better or M1 for $k \times \frac{100+15}{100} \times \frac{100+18}{100}$ oe
2(a)	$1[.0] \quad 0.9$	2	B1 for each
2(b)	correct curve	4	B3 FT for 6 or 7 points B2 FT for 4 or 5 points B1 FT for 2 or 3 points

Question	Answer	Marks	Partial Marks
2(c)	ruled line at $y=-1$	B1	
	0.3 to 0.32	B1	
3(a)(i)	169	2	M1 for $\mathrm{g}(13)$ or $(1+4 x)^{2}$ or better
3(a)(ii)	$1+4 x^{2}$ final answer	1	
3(a)(iii)	x	1	
3(b)	$3.5 \text { or } \frac{7}{2}$	2	M1 for $1+4 x=15$
4(a)(i)	40.9 or 40.91...	3	$\mathbf{M} 2$ for $[\sin A B C=] \frac{29.5 \sin 51.6}{35.3} \mathrm{oe}$ or for $[\cos A B C=] \frac{35.3^{2}+45^{2}-29.5^{2}}{2 \times 35.3 \times 45}$ or M1 for $\frac{29.5}{\sin A B C}=\frac{35.3}{\sin 51.6}$ oe or for correct implicit cosine rule
4(a)(ii)	520 or 520.0 to $520.2 . .$.	2	FT their (a)(i) if used provided working shown M1 for $0.5 \times 29.5 \times 45 \times \sin 51.6$ oe or for $0.5 \times 35.3 \times 45 \times \sin ($ their $(\mathrm{a})(\mathrm{i}))$ or for $0.5 \times 35.3 \times 29.5 \sin (180-51.6-$ their(a)(i))
4(b)(i)	41.2 or 41.21 to 41.23	4	M1 for $S Q=2 \times 32 \times \sin \left(\frac{1}{2} \times 56\right)$ oe or $\sqrt{32^{2}+32^{2}-2 \times 32 \times 32 \times \cos 56}$ oe or $\frac{32 \sin 56}{\sin ((180-56) \div 2)}$ oe M2 for $S R^{2}=47^{2}+\left(\text { their } S Q^{2}\right)-2 \times 47 \times \text { their } S Q \times \cos 60$ or M1 for implicit form
4(b)(ii)	28.3 or 28.25 to $28.29 \ldots$	3	M2 for $32 \times \sin 62$ oe or M1 for recognition that line from P is perpendicular to $S Q$
5(a)	$121 \text { or } 120.8 \ldots \text { or } 120 \frac{5}{6}$	4	M1 for midpoints soi M1 for use of $\sum f x$ with x in correct interval including both boundaries but not if x is $50,50,100$ and 300 M1 (dep on 2nd M1) for $\sum f x \div 120$

Question	Answer	Marks	Partial Marks
5(b)	12.451 .4	3	B1 for each If 0 scored SC1 for fd's [0.86,] 0.62, 0.25 and 0.07 oe
5(c)	$\begin{array}{llll}43 & 74 & 99 & 120\end{array}$	2	B1 for 2 or 3 correct
5(d)	Correct diagram	3	B1 for correct horizontal placement for 4 plots B1FT for correct vertical placement for 4 plots B1FT dep on at least B1 for reasonable increasing curve or polygon through their 4 points If 0 scored SC1 FT for 3 out of 4 points correctly plotted
5(e)(i)	Strict FT their median reading	1	
5(e)(ii)	Strict FT their UQ reading	1	
5(e)(iii)	Strict FT their reading at $\mathbf{4 0}^{\text {th }}$ percentile	2	B1 for 48 written or mark at cf $=48$ on graph
5(e)(iv)	Strict FT their reading at 400 - their reading at 250	2	B1 for either correct reading at 250 or 400
6(a)	15	2	M1 for $\frac{360}{180-156}$ or for $\frac{180(n-2)}{n}=156$ oe
6(b)	38	2	B1 for $A O B=76$
6(c)	68	2	B1 for $R S P=68$ or $R Q P=112$

Question	Answer	Marks	Partial Marks
6(d)	Two pairs of equal angles identified with fully correct reasons	M3	M2 for one pair of equal angles identified with fully correct reasons $K M G=90$ angle in semicircle and $O G H=90$ angle between tangent and radius OR $K M G=O G H$ alternate segment OR $G O H=M G K$ alternate angles OR Angle $F G M=$ angle $G H O$ corresponding and angle $F G M=G K M$ alternate segment and angle $H=$ angle K or M1 for $K M G=90$, angle in semicircle or $O G H=90$, angle between tangent and radius
	Two or three pairs of angles equal [so similar] oe	A1	Dep on M3 with no incorrect work seen
7(a)	31.5	3	M2 for $17.5 \times \sqrt{\frac{1134}{350}}$ oe or M1 for $\sqrt{\frac{1134}{350}}$ oe isw or $\sqrt{\frac{350}{1134}}$ oe isw or for $\frac{1134}{350}=\left(\frac{x}{17.5}\right)^{2}$ oe
7(b)	163.9375 or $163 \frac{15}{16}$ final answer	2	B1 for $15+0.25$ or $10.5+0.25$ or better seen
7(c)	40.5[0]	2	M1 for $x \times\left(1-\frac{18}{100}\right)=\frac{166.05}{[5]}$ oe
7(d)	\$2.23 final answer	3	B2 for $2.227 \ldots$ or 2.23 seen OR M2 for $57-\frac{48.2}{0.88}$ oe or M1 for $\frac{48.2}{0.88}$ oe If 0 scored $\mathbf{S C 1}$ for 57×0.88 oe seen

Question	Answer	Marks	Partial Marks
$8($ a)	$\frac{12}{x}+\frac{26}{x+10}=2.8$ oe isw	B2 for $\frac{12}{x}+\frac{26}{x+10}$ oe isw OR B1 for $\frac{26}{x+10}$ seen	
B1 for time $=2.8$ or $\frac{168}{60}$ or $2 \frac{48}{60}$ oe			

Question	Answer	Marks	Partial Marks
9(b)	14500 or 14470 to 14480	4	M3 for $200 \times 60 \times 24 \times \pi \times 4^{2}[\div 1000]$ or $2 \times 60 \times 24 \times \pi \times 0.04^{2}[\times 1000]$ or M2 for $200 \times \pi \times 4^{2}$ or for $2 \times \pi \times 0.04^{2}$ or M1 for $\pi \times 4^{2}$ oe or $\pi \times 0.04^{2}$ seen oe isw or $1000 \mathrm{~cm}^{3}=1$ litre soi or $1 \mathrm{~m}^{3}=1000$ litres soi or for 24×60 seen oe
10(a)	$x^{3}+2 x^{2}-5 x-6$ final answer	3	B2 for correct expansion of three brackets unsimplified or for simplified expression of correct form with 3 out of 4 terms correct or $\mathbf{B 1}$ for correct expansion of 2 of the 3 given brackets with at least 3 terms out of four correct
10(b)	$\frac{M c}{M-2 f}$ or $\frac{-M c}{2 f-M}$ final answer	4	M1 for clearing $g-c$ from denominator e.g. $M(g-c)=2 f g$ M1 for correctly isolating terms in g in numerator on one side M1 for correctly factorising or simplifying, to single term in g in an equation M1 for correctly dividing by bracket to final answer
10(c)	$\frac{4 x}{x+4}$ final answer	3	$\begin{aligned} & \text { B1 for } 4 x(x-4) \\ & \text { B1 for }(x+4)(x-4) \end{aligned}$
11(a)(i)	$\frac{1}{6}$ oe on all late branches $\frac{5}{6}$ oe on all not late branches	2	B1 for one correct vertical pair $\frac{1}{6}$ oe and $\frac{5}{6}$ oe
11(a)(ii)	$\frac{5}{36}$ oe	2	FT their tree M1 for their $\frac{1}{6} \times$ their $\frac{5}{6}$
11(b)(i)	$(G \cup T \cup M)^{\prime} \mathrm{oe}$	1	
11(b)(ii)	28	1	
11(b)(iii)	$\frac{17}{50}$ oe	1	

Question	Answer	Marks	Partial Marks
11(b)(iv)	$\frac{4}{7} \mathrm{oe}$	3	M2 for $\frac{16}{21} \times \frac{15}{20}$ or M1 for $\frac{n}{21} \times \frac{n-1}{20}$ or for $\frac{16}{21}$ and $\frac{15}{20}$ seen If 0 scored SC1 for answer $\frac{256}{441}$ oe
12(a)	85[.0], 265[.0] and no others	2	B1 for each If 0 scored $\mathbf{S C 1}$ for two values in the range with a difference of 180 but not multiples of 90
12(b)	correct shape and passes through origin	3	B1 for any positive cubic shape B1 for sketch with one max and one min and with 3 roots including zero If 0 scored, SC1 for $x(x+2)(x-2)$ soi
12(c)	$\begin{aligned} & a=-12 \\ & b=5 \\ & k=-11 \end{aligned}$	6	B5 for 2 correct OR B2 for $3 x^{2}+a$ or B1 for $3 x^{2}$ isw M1dep on at least B1 for their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ M1dep on at least B1M1 for $x=2$ or $x=-2$ substituted in their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ equation M1 for $k=2^{3}+2 \times$ their $a+b$ and $10-k=(-2)^{3}+(-2) \times$ their $a+b$

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	0580/41
Paper 4 (Extended)	October/November 2021
MARK SCHEME	

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	683	3	$\begin{aligned} & \text { M2 for }[2]((19.4 \times 9.2)+(5.7 \times 9.2)+ \\ & (19.4 \times 5.7)) \text { oe } \\ & \text { or M1 for one of } 19.4 \times 9.2 \text { or } 5.7 \times 9.2 \\ & \text { or } 19.4 \times 5.7 \end{aligned}$
1(a)(ii)	1.93 [0] or 1.932 to 1.933	3	M2 for $19.4 \times 9.2 \times 5.7 \times 1.9$ or M1 for $19.4 \times 9.2 \times 5.7$
1(b)	39375	3	M2 for $9000 \div 200 \times 175 \times 5$ or M1 for $9000 \div 200$ soi or for $\frac{175}{200}$ soi
1(c)	$10^{\text {th }}$ July	3	B2 for 4.1 to 4.2 or $4 \frac{1}{6}$ or 4 days 1.5 hours Or M2 for answer $9^{\text {th }}$ July or $11^{\text {th }}$ July or M1 for $1500 \div(9 \times 40)$
1(d)	167 or 166.9 to 167.0...	3	B2 for answer with figs 167 or figs 1669 to 1670.. or M1 for $\pi \times 22.5^{2} \times 105$ oe If 0 scored SC1 for answer 668 or 667.9 to 668.1
2(a)(i)	71.4 or 71.42 to 71.43	1	
2(a)(ii)	97 [min] 25 [s]	3	B2 for 13 min 55 sec seen or 97.4 or 97.41 to 97.42 seen or 5845 seen OR M2 for $55.66 \ldots \div 4 \times 7$ oe or $3340 \div 4 \times 7$ oe or for $7 / 4 \times 55+7 / 4 \times 40$ oe or M1 for $55 \min 40 \mathrm{sec} \div 4$ oe or M1 for total time $\div 16$ soi
2(b)(i)	60.8[0]	2	M1 for $47.5 \times\left(1+\frac{28}{100}\right)$ oe or B1 for 13.3[0]
2(b)(ii)	71.25	3	B2 for 118.75 Or M2 for $47.50 \div\left(1-\frac{60}{100}\right)-47.50$ or M1 for $x \times\left(1-\frac{60}{100}\right)=47.50 \quad$ oe or better

Question	Answer	Marks	Partial Marks
2(c)	15380	4	```M3 for (1 \(120000-5000) \div(70+2.5)\) oe or B2 for answer figs 15379 to figs 15380 or M2 for \((1120000 \pm 5000) \div(70 \pm 2.5)\) oe or M1 for one of figs 675, 725, 1115, 1125 seen```
2(d)	$1.8[0]$ or 1.801 to 1.802 [million] nfww	2	M1 for figs $16 \times\left(1+\frac{2.4}{100}\right)^{5}$ oe
3(a)	Correct box-and-whisker plot	4	B1 for lowest value and highest value at 30 and 90 B1 for LQ and UQ at 50 and 72 B1 for median at 63
3(b)(i)	56	2	M1 for 24 soi
3(b)(ii)	16	2	B1 for 64 written
3(c)(i)	14, 22	1	
3(c)(ii)	61.5	4	M1 for $35,45,55,65,75,85$ soi M1 for $\Sigma f x$ M1 dep for their Σ f $x \div(8+12+$ their $14+$ their $22+14+10$) or $\Sigma f x \div 80$
3(c)(iii)	$\frac{35}{69} \text { oe }$	3	M2 for [2] $\left(\frac{10}{24} \times \frac{14}{23}\right)$ oe or M1 for $\frac{10}{24}$ or $\frac{14}{24}$ oe seen If 0 scored, $\mathbf{S C 1}$ for answer $\frac{35}{72}$ oe
4(a)(i)	$\frac{10}{3} \text { or } 3 \frac{1}{3} \text { or } 3.33[3 \ldots]$	3	M1 for $42-12 x=3 x-8$ oe or for $7-2 x=\frac{3 x}{6}-\frac{8}{6}$ oe M1 for reaching $a x=b$ correctly FT their first step
4(a)(ii)	$-2.5 \text { or }-2 \frac{1}{2} \text { or }-\frac{5}{2}$	3	M1 for $3 \times 2 x=2(x-5)$ oe M1 for reaching $a x=b$ correctly FT their first step

Question	Answer	Marks	Partial Marks
4(b)(i)	$2(x+12 y)(x-12 y)$ final answer	3	$\begin{aligned} & \text { B2 for }(2 x+24 y)(x-12 y) \\ & \text { or }(2 x-24 y)(x+12 y) \\ & \text { or for } 2(x+12 y)(x-12 y) \text { seen } \\ & \text { OR } \\ & \text { M2 for } k(x+12 y)(x-12 y) \\ & \text { or M1 for } 2\left(x^{2}-144 y^{2}\right) \end{aligned}$
4(b)(ii)	$(5 x-8)(x+5)$ final answer	2	$\begin{aligned} & \text { M1 for } 5 x(x+5)-8(x+5) \\ & \text { or } x(5 x-8)+5(5 x-8) \\ & \text { or for }(5 x+a)(x+b) \text { where } a b=-40 \text { or } \\ & a+5 b=17 \end{aligned}$
4(c)	$4 x^{2}-17 x+9[=0]$ oe	B1	
	$\frac{[--] 17 \pm \sqrt{([-] 17)^{2}-4(4)(9)}}{2 \times 4}$	B2	FT their 3 term quadratic B1FT for $\sqrt{\left.([-] 17)^{2}-4(4)(9)\right)}$ or better or $\left(x-\frac{17}{8}\right)^{2}$ oe or $\sqrt{\frac{([-] 17)^{2}-4(4)(9)}{4}}$ or better and B1FT for $\frac{[--] 17+\sqrt{q}}{2(4)}$ or $\frac{[--] 17-\sqrt{q}}{2(4)}$ or better or $\frac{17}{8}+\sqrt{\frac{145}{64}}$ oe or $\frac{17}{8}-\sqrt{\frac{145}{64}}$ oe or $\frac{\frac{[--] 17}{2}+\sqrt{q}}{4}$ or $\frac{\frac{[--] 17}{2}-\sqrt{q}}{4}$
	0.62 and 3.63 cao	B2	B1 for each SC1 for $0.6[0]$ or 0.619 to 0.620 and $3.6[0]$ or 3.6301 to 3.6302 or 0.62 and 3.63 seen in working or -0.62 and -3.63 as final answers
5(a)(i)	62 and Angle at centre is twice angle at circumference oe	2	B1 for either
5(a)(ii)	117 and Isosceles [triangle] and Opposite angles in a cyclic quadrilateral are supplementary	4	B2 for 117 or B1 for [angle $O C D=$] 28 B1dep for isosceles [triangle] and B1 for opposite angles in a cyclic quadrilateral are supplementary

Question	Answer	Marks	Partial Marks
5(b)	24.9 or 24.94 to 24.95	5	B1 for angle $P Q S=42$ M2 for $Q S=5.9 \div \cos 42$ oe or M1 for $\cos 42=\frac{5.9}{Q S}$ oe M1dep for their $S Q \times \pi$ oe
6(a)(i)	9.5, 4.8 and 8.5	3	B1 for each
6(a)(ii)	correct curve	5	B4 for correct curve, but branches joined or touching y axis or B3FT for 9 or 10 correct plots or B2FT for 7 or 8 correct plots or B1FT for 5 or 6 correct plots AND B1 indep two separate branches not touching or cutting y-axis
6(b)	$\begin{aligned} & y=\frac{24}{5}-2 x \text { ruled } \\ & \text { and } \\ & -0.4 \text { to }-0.2 \text { and } 1.45 \text { to } 1.7 \end{aligned}$	4	B2 for correct ruled line crossing curve twice or B1 for correct freehand or for short ruled line or for line with negative gradient through $(0,4.8)$ or for line with gradient - 2 B1 for each value
6(c)	$\begin{aligned} & {[a=] 10} \\ & {[b=] 20} \\ & {[c=]-48} \end{aligned}$	4	B3 for $10 x^{3}-15=48 x-20 x^{2}$ oe or better or B2 for 2 correct values or B1 for 1 correct value or for $5 x^{2}-\frac{15}{2 x}=24-10 x$ or better or for $2 x^{3}-3=\frac{48}{5} x-4 x^{2}$ or better or for $x^{3}-\frac{3}{2}=\frac{24}{5} x-2 x^{2}$ After 0 scored SC1 for correct elimination of a denominator of $5, x$ or $2 x$ from a four term expression.
7(a)(i)(a)	Shape at ($-2,1$) ($-4,1)(-4,7)(0,7)$	2	B1 for 3 correct points or for enlargement SF2 from any centre
7(a)(i)(b)	Shape at $(2,-2)(2,-3)(5,-1)(5,-3)$	3	B2 for correct orientation but wrong position or for 3 correct points or B1 for $y=x-1$ drawn

Question	Answer	Marks	Partial Marks
7(a)(ii)	Rotation 90 [anticlockwise] oe $(0,0)$ oe	3	B1 for each
7(b)	$\frac{3}{4} \mathbf{p}+\frac{1}{2} \mathbf{q} \text { or } \frac{1}{4}(3 \mathbf{p}+2 \mathbf{q}) \text { or } \frac{3 \boldsymbol{p}+2 \boldsymbol{q}}{4}$ final answer	3	M2 for $A M=\overrightarrow{A M}=\frac{1}{2}\left(-\mathbf{p}+\mathbf{q}+\frac{1}{2} \mathbf{p}\right)$ oe or $\mathbf{M 1}$ for correct route for $\overrightarrow{A B}$ oe soi by $-1 / 2 \mathbf{p}+\mathbf{q}$ or for $\overrightarrow{O M}$ soi
8(a)(i)	1.6 oe	2	M1 for $3-5 x=-5$
8(a)(ii)	$\frac{3-x}{5}$ oe final answer	2	M1 for $x=3-5 y$ or $\frac{y}{5}=\frac{3}{5}-x$ or better, or $y-3=-5 x$ oe
8(b)(i)	$20.25-(1.5+x)^{2}$	3	Method 1 B1 for $(\pm 1.5 \pm x)^{2}$ seen B1 for $[\mathrm{b}=] 18+$ their 1.5^{2} OR Method 2 B1 for $b-a^{2}-2 a x-x^{2}$ or for $\mathrm{b}=20.25$ B1 for $\mathrm{a}=1.5$
8(b)(ii)	Correct sketch with max in correct quadrant at $(-1.5,20.25)$	3	FT their $20.25-(\text { their } 1.5+x)^{2}$ provided in that form B1 for \cap shape or for \cup shape if in form $c+(d+x)^{2}$ in part (b)(i) B1 for TP at $(-1.5, k)$ or $(k, 20.25) \mathrm{FT}$ their $20.25 \pm(\text { their } 1.5+x)^{2}$ or for $(-1.5$, 20.25) seen
8(b)(iii)	$[y=] 34-11 x$	6	B2 for $-3-2 x$ or B1 for either $\mathrm{kx}-3, k \neq 0$ or $-2 x+\mathrm{n}$ or for $18-3-2 x$ M1dep for gradient $=$ their $(-3-2(4))$ B1 for y-value at $x=4$, is -10 M1dep for their $-10=($ their -11$) 4+c$ oe

Question	Answer	Marks	Partial Marks
$9(\mathrm{a})$	3.5 oe	$\mathbf{3}$	M1 for $2(x+x+3)=20$ oe M1 for correct $a x=b$ for their linear equation
$9(b)$	116.8 or 116.83 to 116.85 nfww	$\mathbf{5}$	M2 for $\sin p=\frac{5 \sin 20}{2.5}$
$9(c)$	5.07 or 5.068 to 5.071		or M1 for $\frac{2.5}{\sin 20}=\frac{5}{\sin p}$

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	0580/42
Paper 4 (Extended)	October/November 2021
MARK SCHEME	

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).
GENERIC MARKING PRINCIPLE 3:
Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	$\frac{450}{8+7+3} \times 8 \text { oe }$	2	M1 for $\frac{450}{8+7+3}$
1(a)(ii)	75	1	
1(a)(iii)	56	2	$\begin{aligned} & \text { M1 for } \frac{32}{100} \times(450-200-\text { their } 75) \text { oe } \\ & \quad \text { or } \frac{32}{100} \times \frac{450}{8+7+3} \times 7 \text { oe } \end{aligned}$ If 0 scored, $\mathbf{S C 1}$ for answer 231
1(a)(iv)	59000 nfww	3	B2 for 58600 to 58800 or B1 for 293 to 294 or M1 for $\frac{\text { figs } 485 \times 200}{165}$ oe If 0 scored, SC1 for their more accurate answer seen and rounded to the nearest 1000
1(b)(i)	3075000	1	
1(b)(ii)	3.075×10^{6}	1	FT their (b)(i)
1(c)	32.5	2	M1 for $x \times\left(1+\frac{16}{100}\right)=37.7$ or better
1(d)	2460 or 2458....	2	M1 for $1800\left(1+\frac{2.1}{100}\right)^{15}$ oe
2(a)(i)	90	1	
2(a)(ii)	68	1	
2(a)(iii)	52	1	FT 120 - their (a)(ii)
2(a)(iv)	20	2	B1 for 60 in working or as answer
2(b)(i)	97.5	4	M1 for mid-points soi $(50,70,90,115,145,180)$ M1 for use of $\Sigma \mathrm{f} m$ with m in correct interval including both boundaries M1 for (dep on 2nd M1) for $\Sigma f m \div 80$
2(b)(ii)	Bars with heights $0.9,0.5,0.3,0.175$ and with correct widths	4	B1 for each correct bar If 0 scored, SC1 for 3 or 4 correct frequency densities

Question	Answer	Marks	Partial Marks
2(b)(iii)	$\frac{28}{395} \text { oe }$	3	M2 for $[2 \times] \frac{16}{80} \times \frac{14}{79}$ oe or M1 for $\frac{16}{80}$ or $\frac{16}{79}$ oe or $\frac{14}{80}$ oe or $\frac{14}{79}$ oe seen If 0 scored, SC1 for answer $\frac{7}{100}$ oe
3(a)(i)	$\frac{A D}{46.1}=\tan 64 \text { oe or better }$	M1	
	94.51 to 94.52	A1	
3(a)(ii)	$46[.0]$ or $45.96 \ldots$ nfww	3	M2 for $56.5 \times \frac{\sin 94}{78.4}$ oe or M1 for $\frac{56.5}{\sin B A C}=\frac{78.4}{\sin 94}$ oe
3(a)(iii)	102.3 or 102.4 or 102.34 to 102.38	4	M2 for $[\cos C=] \frac{38.6^{2}+78.4^{2}-94.5^{2}}{2 \times 38.6 \times 78.4}$ or M1 for $94.5^{2}=38.6^{2}+78.4^{2}-2 \times 38.6 \times 78.4 \times \cos C$ and A1 for -0.214 or -0.2144 to -0.2137 If 0 scored, $\mathbf{S C 2}$ for [$C A D=] 23.5$ or 23.51 to 23.52 or for $[C D A=] 54.1$ or $54.14 \ldots$
3(b)	16.2 or 16.15..		M2 for $\frac{1}{2} \times 21.5 \times 27.6 \sin 111=\frac{1}{2} \times 34.3 \times d$ oe or M1 for $\frac{1}{2} \times 21.5 \times 27.6 \sin 111$ seen or $\frac{1}{2} \times 34.3 \times d$ oe soi
4(a)(i)	Image at ($-5,6$) (-5, 8) ($-6,7)$	2	B1 for translation by $\binom{-4}{k}$ or $\binom{k}{5}$
4(a)(ii)	Image at (3, 1) $(3,3)(4,2)$	2	B1 for reflection in $y=1$ or $x=k$
4(a)(iii)	Image at $(3,4)(3,8)(1,6)$	2	B1 for enlargement, sf 2, in wrong position
4(b)	Rotation 90° [anticlockwise] oe $(-3,0)$	3	B1 for each

Question	Answer	Marks	Partial Marks
5(a)	$-1,-0.375,3$	3	B1 for each
5(b)	Correct graph	4	B3FT for 8 or 9 correct points or B2FT for 6 or 7 correct points or B1FT for 4 or 5 correct points
5(c)	$\begin{aligned} & y=2-x \text { ruled correctly } \\ & \text { AND } \\ & -0.45 \text { to }-0.35 \\ & 1 \\ & 2.35 \text { to } 2.45 \end{aligned}$	4	B2 for $y=2-x$ ruled or $\mathbf{B} 1$ for $[y=] 2-x$ soi or $y=k-x$ ruled or $y=k x+2$ ruled, but not $y=2$ B2 for all three values or B1 for any two values
6(a)(i)	$4.5,4 \frac{1}{2} \text { or } \frac{9}{2}$	3	M1 for $8 x-12=24$ or $2 x-3=6$ M1 for reaching $a x=b$ correctly FT their first step
6(a)(ii)	$x>-\frac{4}{3}$ or $x>-1 \frac{1}{3}$ final answer	2	M1 for $6 x>6-14$ or $x+\frac{14}{6}>1$
6(b)	$[y=] \sqrt[3]{\frac{2 x^{3}-V}{3}}$ oe final answer	3	M1 for isolating term in y M1 for division by 3 or FT their first step M1 for cube root or FT their previous step to the final answer
6(c)	$4 n^{2}-20 n+12$	M2	B1 for $4 n^{2}-10 n-10 n+25$
	$4\left(n^{2}-5 n+3\right)$ or correct explanation linked to expression	A1	with no errors seen e.g. 4, [-]20 and 12 are all multiples of 4 or divides each term or each coefficient by 4
6(d)(i)	$p=-3$ and $q=23$	3	$\begin{aligned} & \text { B2 for } 23-2(x-3)^{2} \\ & \text { OR } \\ & \text { M1 for }[q]-2 x^{2}-4 p x-2 p^{2} \text { or }-2(x-3)^{2} \\ & \text { seen } \\ & \text { B1 for either } p=-3 \text { or } q=23 \\ & \text { or } \mathbf{F T} q=5+2(\text { their } p)^{2} \end{aligned}$
6(d)(ii)	$(3,23)$	1	FT their (d)(i)
6(e)	69	2	M1 for figs 13^{2} oe
7(a)(i)	$\frac{16 \pi}{3}$ or $5 \frac{1}{3} \pi$ final answer	2	M1 for $\frac{1}{2} \times \frac{4}{3} \pi \times 2^{3}$ oe

Question	Answer	Marks	Partial Marks
7(a)(ii)	2.4[0]	4	B3 for answer in range 2.396... to $2.40 \ldots$ OR M3 for their $\frac{16 \pi}{3}+\pi \times 2^{2} \times 5.2+$ $\frac{1}{3} \pi \times 2^{2} \times h=\frac{88 \pi}{3}$ oe or M2 for $\frac{88 \pi}{3}-$ their $\frac{16 \pi}{3}-\pi \times 2^{2} \times 5.2$ oe or M1 for $\pi \times 2^{2} \times 5.2$ oe or $\frac{1}{3} \pi \times 2^{2} \times h$ oe soi
7(a)(iii)	1 hour 38 min or 1 hour 37.8 min to 1 hour 37.9... min	3	B2 for $1.63[2 \ldots]$ or 98 [mins] or 97.8 to 97.9...] or M1 for $\frac{\frac{88 \pi}{3} \times 620}{35000}[\times 60]$ oe
7(b)	$8.5[0]$ or 8.496 to 8.497	4	M3 for $[r=] \sqrt{\frac{65}{\frac{140}{360} \pi-\frac{1}{2} \sin 140}}$ oe or M2 for $\frac{140}{360} \pi \times r^{2}-\frac{1}{2} r^{2} \times \sin 140[=65]$ oe or M1 for either area expression seen
8(a)(i)	$\frac{12}{x}$ or $12 \div x$ final answer	1	
8(a)(ii)	$\frac{12}{x-4}-$ their $\frac{12}{x}=1.5 \mathrm{oe}$	M1	Accept 3 or more term equivalents
	$12 x-12(x-4)=1.5 x(x-4)$ or $\frac{12 x-12(x-4)}{x(x-4)}[=1.5]$	M1	Correctly clearing fractions, or correctly collecting into a 'single fraction' FT their expression dep on two fractions both with algebraic denominators
	$12 x-12 x+48=1.5 x^{2}-6 x$	M1	Correctly multiplying their two sets of brackets FT their expression dep on two fractions both with algebraic denominators or first M1 given
	$\left[1.5 x^{2}-6 x-48=0\right]$ $x^{2}-4 x-32=0$	A1	One further step either 3 term equation or division throughout by 1.5 leading to solution With no errors or omissions seen, dep on M3

Question	Answer	Marks	Partial Marks
8(a)(iii)	$(x+4)(x-8)$	M2	$\begin{aligned} & \text { M1 for }(x+a)(x+b) \\ & \text { where } a b=-32 \text { or } a+b=-4 \\ & \text { or for } x(x+4)-8(x+4) \\ & \text { or } x(x-8)+4(x-8) \end{aligned}$
	-4 and 8	B1	
8(a)(iv)	3	2	FT $\frac{12}{\text { their } 8-4}$ M1 for $\frac{12}{\text { their } 8-4}$ or $\frac{12}{\text { their } 8}+1.5$ oe or for answer $\frac{12}{\text { their } 8}$
8(b)	69.6	3	M2 for $\frac{430 \text { to } 440}{6+0.25}$ or $\frac{440-5}{6 \text { to } 6.5}$ oe or M1 for $440+5$ oe or $440-5$ oe or $6+0.25$ oe or $6-0.25$ oe seen
9(a)(i)	$(3,1)$	1	
9(a)(ii)	$\binom{-10}{15}$	1	
9(a)(iii)	3.61 or 3.605 to 3.606	2	M1 for $(-2)^{2}+3^{2}$ oe
$9(b)(i)(a)$	$\frac{1}{2} \mathbf{c}$	1	
$9(b)(\mathrm{i})(\mathrm{b})$	$\mathbf{a}+\frac{1}{2} \mathbf{c} \text { oe }$	1	FT $\mathbf{a}+$ their (b)(i)(a)

Question	Answer	Marks	Partial Marks
9(b)(ii)(a)	$\vec{O} \vec{P}=\frac{1}{3}(2 \mathbf{a}+\mathbf{c})$ oe and $\overrightarrow{O Q}=\frac{1}{2}(2 \mathbf{a}+\mathbf{c})$ oe OR $\overrightarrow{O P}=\frac{2}{3}\left(\mathbf{a}+\frac{1}{2} \mathbf{c}\right)$ OR $\overrightarrow{P Q}=\frac{1}{3}\left(\mathbf{a}+\frac{1}{2} \mathbf{c}\right)$ and correct comment e.g. have the same base vector or that they are multiples of one another and they share a common point OR e.g. $\overrightarrow{O Q}=1.5 \overrightarrow{O P}, 2 \overrightarrow{P Q}=\overrightarrow{O P}$	2	B1 for $\vec{O} \vec{P}$ or $\overrightarrow{P Q}$ factorised or for correct multiplicative statement on relationship without factorised vectors e.g. $\overrightarrow{O Q}=1.5 \vec{O} \vec{P}, \frac{2}{3} \overrightarrow{O Q}=\vec{O} \vec{P}$, $\begin{aligned} & 2 \overrightarrow{P Q}=\overrightarrow{O P} \vec{P} \\ & 1.5\left(\frac{2}{3} \mathbf{a}+\frac{1}{3} \mathbf{c}\right)=\mathbf{a}+\frac{1}{2} \mathbf{c} \end{aligned}$
9(b)(ii)(b)	1.5 oe	1	
10(a)	$(2,-10)$ and $(-2,22)$	5	B2 for $3 x^{2}-12$ isw or B1 for $3 x^{2}+k$ or $p x^{2}-12(p \neq 0)$ or for $3 x^{2}-12+6$ isw M1 for setting their derivative $=0$ or $\frac{d y}{d x}=0$ B1 for $x= \pm 2$ or for one correct coordinate pair
10(b)	$(2,-10)$ minimum with correct reason or sketch $(-2,22)$ maximum with correct reason or sketch	3	B2 for 1 correct with correct reasoning or B2FT for correct evaluation with correct 2nd derivative for both of their different x values or M1 for showing [2nd derivative $=$] $6 x$ or gradients for one value on either side of one correct stationary point or for reasonable sketch of cubic
11(a)(i)	10.2	2	M1 for $\frac{Y Z}{13.6}=\frac{15.3}{20.4}$ oe or better

Question	Answer	Marks	Partial Marks
11(a)(ii)	143.1	3	M2 for $\left(\frac{20.4}{13.6}\right)^{2} \times 63.6$ oe or M1 for $\left(\frac{20.4}{13.6}\right)^{2}$ or $\left(\frac{13.6}{20.4}\right)^{2}$ oe Alt method M2 for $1 / 2 \times 20.4 \times 15.3 \times \sin R$ where R is $\sin ^{-1}\left(\frac{63.6}{0.5 \times 13.6 \times \text { their }(\mathrm{a})(\mathrm{i})}\right)$ or M1 for $R=\sin ^{-1}\left(\frac{63.6}{0.5 \times 13.6 \times \text { their }(\mathrm{a})(\mathrm{i})}\right)$
11(b)	0.55	3	M2 for [ratio of areas] $=\left(\sqrt[3]{\frac{37.5}{64.8}}\right)^{2}$ or $\left(\sqrt[3]{\frac{64.8}{37.5}}\right)^{2} \mathrm{oe}$ or M1 for [ratio of lengths] $=\sqrt[3]{\frac{37.5}{64.8}}$ or $\sqrt[3]{\frac{64.8}{37.5}}$ oe or for $\left(\frac{0.792}{x}\right)^{3}=\left(\frac{64.8}{37.5}\right)^{2}$ oe

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS

0580/43
Paper 4 (Extended)
October/November 2021
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	Rotation 90° clockwise oe [centre] (5, 2)	3	B1 for each
1(b)(i)	Translation $\binom{-1}{4}$	2	B1 for each
1(b)(ii)	4.12 or 4.123...	2	M1 for $(\text { their }(-1))^{2}+(\text { their } 4)^{2}$
2(a)	52°	3	M1 for $180-2 \times 38$, implied by 104 M1 for their $A O B \div 2$
2(b)(i)	80°	2	B1 for $F E C=50$ or $F C E=50$
2(b)(ii)	100°	1	FT 180 - their (i)
3(a)(i)	4.095	2	B1 for figs 4095 or M1 for $\frac{525 \times 7.8}{1000}$
3(a)(ii)	15	3	B2 for 35 OR M2 for $\frac{1}{2}(10+4) \times 5 \times L=525$ oe M1 for $\frac{1}{2}(10+4) \times 5$ oe
3(a)(iii)	455 or 454.9...	6	M3 for their $[B D=] \sqrt{3^{2}+5^{2}} \times($ their 15$)$ [$\times 2$ 2] or B2 for $\sqrt{34}$ or 5.83 or 5.830 to 5.831 or M1 for $5^{2}+\left(\frac{1}{2}(10-4)\right)^{2}$ and M1 for their 35×2 M1 for $($ their 15$) \times 10$ and (their 15$) \times 4$
3(a)(iv)	4200	3	M2 for $525 \times\left(\frac{10}{5}\right)^{3}$ oe or M1 for $\left(\frac{10}{5}\right)^{3}$ or $\left(\frac{5}{10}\right)^{3}$ oe

Question	Answer	Marks	Partial Marks
3(b)	182.875 ... 307.125 final answer	3	B2 for either seen or M1 for 10 ± 0.5 or 6 ± 0.5 or 4 ± 0.5 oe
4(a)	Correctly eliminate one variable	M1	
	$\begin{aligned} & p=3 \\ & q=-1 \end{aligned}$	A2	A1 for each If M0, SC1 for 2 values satisfying one of original equations If 0 scored SC1 for correct answers with no working
4(b)	$1 \frac{1}{11}$ or $\frac{12}{11} 1.09$ or 1.090 to 1.091	2	M1 for $\frac{3 x}{12}+\frac{8 x}{12}=1$ or better
4(c)(i)	$-2<x \leqslant 3$	3	B2 for $-2<x$ or $x \leqslant 3$ or M1 for $-8+2<3 x$ or $3 x \leqslant 7+2$
4(c)(ii)	$-1,0,1,2,3$	1	FT dep on -ve and +ve values in their (c)(i)
4(d)	$4 a(4-a)$ final answer	2	B1 for any correct partial factorisation
4(e)(i)	$\frac{2 b}{3 a}$ final answer	2	M1 for $\frac{1}{2 a} \times \frac{4 b}{3}$ or better
4(e)(ii)	$\frac{x-2}{x-1}$ final answer nfww	2	B1 for $2(x-1)-x$ oe seen.
5(a)(i)	105	2	$\text { M1 for } \frac{3}{100} \times 500[\times 7]$
5(a)(ii)	115 or 114.9...	3	M2 for $500 \times\left(1+\frac{3}{100}\right)^{7}[-500]$ or M1 for $500 \times\left(1+\frac{3}{100}\right)^{k}, k$ integer $\geqslant 2$
5(b)	8600	3	M2 for $\frac{6269.4}{\left(1-\frac{10}{100}\right)^{3}}$ oe oe or M1 for $C \times\left(1-\frac{10}{100}\right)^{3}=6269.4$ oe
6(a)	9.33 or 9.334...	3	M2 for $\frac{12 \sin 50}{\sin 100}$ or M1 for $\frac{\sin 100}{12}=\frac{\sin 50}{A D}$ oe

Question	Answer	Marks	Partial Marks
6(b)	$[\cos =] \frac{11^{2}+12^{2}-8^{2}}{2 \times 11 \times 12}$	M2	M1 for $8^{2}=11^{2}+12^{2}-2 \times 11 \times 12 \cos (B A C)$
	40.415...	A2	$\text { A1 for } 0.761 \ldots \text { or } \frac{201}{264} \text { or } \frac{67}{88}$
6(c)	70.8 or 70.77 to 70.79...	3	M1 for $\begin{aligned} & \frac{1}{2} \times 12 \times \text { their }(\mathbf{a}) \times \sin (180-100-50) \\ & \text { M1 for } \frac{1}{2} \times 12 \times 11 \times \sin (40.42) \end{aligned}$
6(d)	7.13 or 7.131 to 7.132...	3	$\text { M2 for } \frac{\text { dist }}{11}=\sin (40.42)$ or M1 for recognition that shortest distance is perpendicular to $A C$
7(a)	87	3	M2 for $3 c+4 c=587+22$ or better or M1 for $3 c+2(2 c-11)$ [= 587 or 5.87]
7(b)	1.1[0]	3	M2 for $22 w+22=42 w$ or better or M1 for $\frac{22}{w}=\frac{42}{w+1}$ oe OR B2 for number of bottles $=20$ or M1 for $N w=22$ and $N(w+1)=42$
7(c)(i)	$\frac{9}{x}+\frac{5}{2 x+1}=2.5 \quad \text { oe }$	M2	M1 for $\frac{9}{x}$ or $\frac{5}{2 x+1}$
	$9(2 x+1)+5 x=2.5 x(2 x+1)$ oe or $\frac{9(2 x+1)+5 x}{x(2 x+1)}[=2.5$ oe $]$	M1	Correctly clearing fractions, or correctly collecting into a single fraction FT their expression dep on two fractions both with algebraic denominators
	All brackets expanded leading to $10 x^{2}-41 x-18=0$ with no errors or omissions	A1	

Question	Answer	Marks	Partial Marks
7(c)(ii)	$\begin{aligned} & (2 x-9)(5 x+2) \\ & \text { or } \frac{-(-41) \pm \sqrt{(-41)^{2}-4(10)(-18)}}{2(10)} \end{aligned}$	M2	B1 for $(a x+b)(c x+d)$ with $a c=10$ and $b d=-18$ or $a d+b c=-41$ or $\sqrt{(-41)^{2}-4(10)(-18)}$ or $\frac{-(-41)+\sqrt{q}}{2(10)}$ oe or $\frac{-(-41)-\sqrt{q}}{2(10)}$ oe or both or M1 for $\left(x-\frac{41}{20}\right)^{2}-\frac{18}{10}-\left(\frac{41}{20}\right)^{2}=0$ or better
	10	A2	A1 for $[x=] \frac{9}{2}$ oe or M1 for $2 \times$ their positive root +1
8(a)(i)	$\frac{60}{360} \times 600 \text { oe }$	1	
8(a)(ii)	45	2	M1 for $\frac{27}{360} \times 600$ oe
8(a)(iii)	Correct straight line on the pie chart	2	B1 for 75
8(b)	Correct diagram	3	B1 for any three of 0.6, 3.4, 5.2, 7.5, 8.7 correctly placed B1 for 7.5 and 8.7 seen
8(c)(i)	5	1	
8(c)(ii)	2	1	
8(c)(iii)	3	1	
8(d)	39.2	4	M1 for mid-values soi M1 for $\Sigma f x$ with x in correct interval including boundaries M1 dep for $\frac{\Sigma f x}{50}$ dep on second M1
9(a)	$(0,0),(1,0),(2,0)$	2	B1 for any two correct If 0 scored, SC 1 for all three x values clearly identified

Question	Answer	Marks	Partial Marks
9 (b)	$\begin{aligned} & x\left(x^{2}-x-2 x+2\right) \text { or }\left(x^{2}-x\right)(x-2) \\ & \text { or }(x-1)\left(x^{2}-2 x\right) \end{aligned}$ leading to $x^{3}-3 x^{2}+2 x$ with no errors or omissions	2	$\begin{aligned} & \text { B1 for } x\left(x^{2}-x-2 x+2\right) \\ & \text { or }\left(x^{2}-x\right)(x-2) \\ & \text { or }(x-1)\left(x^{2}-2 x\right) \end{aligned}$
9(c)	$3 x^{2}-6 x+2$	B2	B1 for 2 correct terms
	$\text { their } \frac{\mathrm{d} y}{\mathrm{~d} x}=0$	M1	
	$\text { their } \frac{-(-6) \pm \sqrt{(-6)^{2}-4(3)(2)}}{2(3)}$	M2	M1 for $\sqrt{(-6)^{2}-4(3)(2)}$ or for $p=-(-6)$ and $r=2(3)$ if in form $\frac{p \pm \sqrt{q}}{r}$
	$\begin{aligned} & (0.4,0.4) \\ & (1.6,-0.4) \end{aligned}$	B3	B2 for 0.4 or $0.42 \ldots$ and 1.6 or 1.57 to 1.58 or for one correct pair of coordinates or B1 for 0.4 or $0.42 \ldots$ or 1.6 or 1.57 to 1.58 If 0 scored $\mathbf{S C} 1$ for $1+\sqrt{\frac{1}{3}}$ and $1-\sqrt{\frac{1}{3}}$ or better or for one correct pair of coordinates in any form
9(d)	Correct sketch	2	FT their (c) but must be cubic i.e. correct shape cubic through origin and max and min in correct quadrants B1 for cubic shape sketch
10(a)(i)	1	1	
10(a)(ii)	$\frac{1}{4}$ oe nfww	2	M1 for $\frac{2}{4} \times \frac{2}{4}$ oe
10(a)(iii)	7	2	M1 for trials with $\left(\frac{3}{4}\right)^{k} \times \frac{1}{4}$ soi
10(b)(i)	0.72 oe	2	M1 for 0.9×0.8
10(b)(ii)	0.26 oe	3	M2 for $0.9 \times 0.2+0.1 \times 0.8$ or $1-$ their $(\mathbf{b})(\mathbf{i})-0.1 \times 0.2$ or M1 for 0.9×0.2 or 0.1×0.8 or $1-$ their $(\mathbf{b})(\mathbf{i})$ or $1-0.1 \times 0.2$
11(a)(i)	64	1	

Question	Answer	Marks	Partial Marks
11(a)(ii)	127	1	FT $2 \times$ their (a)(i) - 1
11(b)	$\pm \frac{1}{2}$ oe nfww	4	$\begin{aligned} & \text { M1 for }(2 x-1)^{2}+2(2 x-1) \\ & \text { B1 for } 4 x^{2}-2 x-2 x+1 \text { or } \\ & (2 x-1)(2 x-1+2) \end{aligned}$ B1 for $4 x^{2}-1[=0]$ or $(2 x-1)(2 x+1)$ $[=0]$ OR M1 for $x(x+2)=0($ solving $\mathrm{g}(x)=0)$ A1 for $x=0$ or -2 B1 for $2 x-1=0$ or $2 x-1=-2$
11(c)	$\frac{x+1}{2}$ oe final answer	2	M1 for $y+1=2 x$ or $\frac{y}{2}=x-\frac{1}{2}$ or $x=2 y-1$
11(d)	$-\frac{1}{6}$ oe nfww	3	B2 for $3 x=-\frac{1}{2}$ oe OR M1 for $2^{2 x} \times 2^{x}$ oe or $4^{\frac{1}{2} x} \times 4^{x}$ oe or 8^{x} oe M1 for $2^{-\frac{1}{2}}$ or $4^{-\frac{1}{4}}$ or $8^{-\frac{1}{6}}$ soi

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	0580/41
Paper 4 (Extended)	May/June $\mathbf{2 0 2 1}$
MARK SCHEME	

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {M }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	28	2	M1 for $32 \times 0.50+30 \times 0.40$
1(a)(ii)	$\begin{aligned} & 98-100 \times 0.5 \\ & 48 \div 0.4=120[\text { minutes }]=2[\mathrm{hrs}] \end{aligned}$	M3	M1 for $100 \times 0.50+x \times 0.40=98$ M1 for $50+0.4 x=98$ or $0.4 x=48$ M1 for $x=\frac{48}{0.4} \quad x=120[\mathrm{~min}]=2[\mathrm{hr}]$ OR M1 for $100 \times 0.5[=50$] M1 for $98-50[=48]$ M1 for $48 \div 0.4=120[\mathrm{~min}]=2[\mathrm{hr}]$
1(b)	$\begin{aligned} & 2925 \\ & 1170 \\ & 4095 \end{aligned}$	3	B2 for one correct answer or M1 for $8190 \div(5+2+7)$
1(c)	58	2	M1 for $\left(1+\frac{45}{100}\right) k=84.1$ oe
2(a)	$0.18 \text { or } \frac{9}{50}$	1	
2(b)	$1944 \times \frac{1000}{3600 \times 3600}$	M1	
	$9 \div 0.15=60$	M1	
2(c)		1	ruled line to axis with point of contact at 240
2(d)	6.9375	4	M2 for area $=\frac{1}{2} \times(130+240) \times 9$ oe or M1 for one correct partial area M1dep for their total area $\div 240$
3(a)	2.64 or 2.638...	4	M3 for $\left[R^{2}=\right] \frac{\pi \times 2.4^{2}+\pi \times 2.4 \times 6.3}{\pi+2 \pi}$ oe or M2 for $\pi \times 2.4^{2}+\pi \times 2.4 \times 6.3=\pi R^{2}+\frac{1}{2} \times 4 \pi R^{2}$ or M1 for $\left[\pi \times 2.4^{2}\right]+\pi \times 2.4 \times 6.3$ oe or $\left[\pi R^{2}\right]+\frac{1}{2} \times 4 \pi R^{2}$ oe

Question	Answer	Marks	Partial Marks
3(b)	953 or 952.6 to 952.8	4	M3 for $\frac{1}{3} \times \pi \times 7.6^{2} \times 16 \times\left(1-\left(\frac{16-12}{16}\right)^{3}\right)$ or $\frac{1}{3} \times \pi \times 7.6^{2} \times 16-\frac{1}{3} \times \pi \times 1.9^{2} \times(16-12)$ OR B1 for top radius $=1.9$ or $\left(\frac{16-12}{16}\right)^{3}$ oe M2 for $\begin{aligned} & \frac{1}{3} \times \pi \times 7.6^{2} \times 16-\frac{1}{3} \times \pi \times(\text { their } 1.9)^{2} \times(16-12) \\ & \text { or } \frac{1}{3} \times \pi \times 7.6^{2} \times 16 \times\left(1-\text { their }\left(\frac{16-12}{16}\right)^{3}\right) \\ & \text { or M1 for } \frac{1}{3} \times \pi \times 7.6^{2} \times 16 \\ & \text { or for } \frac{1}{3} \times \pi \times(\text { their } 1.9)^{2} \times(16-12) \end{aligned}$
4(a)(i)	438 cao	2	$\text { M1 for } \frac{500}{1.142}$
4(a)(ii)	14.95	2	M1 for [329-] 275×1.142 oe
4(b)	14	2	M1 for $5.25 \times \frac{8}{3}$ oe
4(c)	1.7[0] or 1.699...	3	$\begin{aligned} & \text { M2 for } \sqrt[5]{\frac{6669}{6130}} \\ & \text { or M1 for } 6669=6130(k)^{5} \end{aligned}$
5(a)	13.5 or 13.47...	4	B1 for angle 102 seen M2 for $\sqrt{10.6^{2}+6.4^{2}-2 \times 10.6 \times 6.4 \times \cos (180-78)}$ OR M1 for $10.6^{2}+6.4^{2}-2 \times 10.6 \times 6.4 \times \cos (180-78)$ A1 for 181.5...
5(b)	8.68 or 8.682 to 8.683 nfww	4	B1 for angle $=44$ M2 for $\sin (180-58-78) \times \frac{10.6}{\sin 58}$ oe or M1 for $\frac{\sin (180-58-78)}{x}=\frac{\sin 58}{10.6}$ oe

Question	Answer	Marks	Partial Marks
5(c)	78.2 or 78.17 to 78.19...	3	M2 for $\frac{1}{2} \times 10.6 \times(6.4+$ their 8.68$) \times \sin (78)$ oe OR M1 for $\frac{1}{2} \times 10.6 \times 6.4 \times \sin (180-78)$ oe M1 for $\frac{1}{2} \times 10.6 \times$ their $8.68 \times \sin 78$ oe
6(a)		1	
6(b)		2	B1 for 2 or 3 correct elements or M1 for $34-x, x$ and $39-x$ correctly placed on diagram and $x=28$
6(c)(i)	8	1	
6(c)(ii)	11	1	
6(c)(iii)	2	1	
6(c)(iv)	$C \cap S \cap B^{\prime}$ oe	1	
6(c)(v)	$\frac{19}{30} \text { oe }$	1	
6(c)(vi)	$\frac{2}{57} \text { oe }$	3	M2 for $\frac{4}{19} \times \frac{3}{18}$ or M1 for $\frac{4}{19}$ seen
6(c)(vii)	Equal numbers 15 or equal probability $\frac{15}{30}$ oe	1	
7(a)	$\frac{x+5}{x+4}$ final answer	3	B1 for $(x-5)(x+5)$ B1 for $(x-5)(x+4)$
7(b)	$\frac{2 x^{2}+12 x-5}{x(x-1)} \text { or } \frac{2 x^{2}+12 x-5}{x^{2}-x}$ final answer	3	B1 for common denominator $x(x-1)$ oe B1 for $(x-1)(x+5)+x(x+8)$ or better
7(c)(i)	$6 x^{2}-8 x$ final answer	2	B1 for each term in final answer or M1 for correct answer seen and spoilt

Question	Answer	Marks	Partial Marks
7(c)(ii)	64	2	FT their (c)(i) correctly evaluated provided at least 2 terms but not the original equation M1 for substituting $x=4$ into their (c)(i)
7(c)(iii)	$(0,6)$ $\left(\frac{4}{3}, \frac{98}{27}\right)$ oe	4	M1 for their derivative $=0$ or $\frac{d y}{d x}=0$ soi B1 for $x=0$ and $x=\frac{4}{3}$ M1dep for substituting one of their x values into $y=2 x^{3}-4 x^{2}+6$ soi
8(a)(i)	$\begin{array}{lllll}3 & 22 & 43 & 48 & 50\end{array}$	2	B1 for 4 correct or M1 for one error in adding.
8(a)(ii)	correct diagram	3	B1FT their (a)(i) for 5 correct heights B1 for 5 points at upper ends of intervals on correct vertical line B1FT dep on at least B1 for increasing curve through their 5 points After 0 scored, SC1 for 4 of their points correctly plotted
8(a)(iii)	35 to 38	1	
8(b)	Correct box-and-whisker diagram	4	B1 for median 1.64 drawn B1 for LQ 1.57 drawn B1 for UQ 1.71 drawn If 0 scored $\mathbf{S C 1}$ for $1.64,1,57$ or 1.71 seen
9(a)	1350 or 1354....	6	M2 for $20^{2}-13^{2}$ or M1 for $B C^{2}+13^{2}=20^{2}$ A1 for $\sqrt{231}$ or 15.2 or 15.19 to 15.20 M1 for 20×24 and 13×24 and their 15.2×24 M1 for $[1 / 2 \times]$ their 15.2×13
9(b)	2370 or 2369 to $2371 \ldots$ cao	1	
9(c)	24.6 or 24.58 to 24.59	4	$\mathbf{M} 3$ for $\sin [\ldots]=\frac{13}{\sqrt{20^{2}+24^{2}}}$ oe or M2 for $\sqrt{20^{2}+24^{2}}$ or $\sqrt{24^{2}+20^{2}-13^{2}}$ or M1 for $A F^{2}=20^{2}+24^{2}$ or $24^{2}+20^{2}-13^{2}$ or M1 for correct angle identified
10(a)	$\begin{array}{lllll}0.75 & 3 & 7 & 3 & 0.75\end{array}$	3	B2 for 4 or 3 correct or B1 for 2 correct

Question	Answer	Marks	Partial Marks
10(b)	correct curve	4	B3FT for 8 or 9 correct plots B2FT for 6 or 7 correct plots B1FT for 4 or 5 correct plots
10(c)	Accept any integer ≥ 8	1	
10(d)	line $y=4-\frac{1}{2} x$ ruled	B3	B2 for $\quad[y=] 4-\frac{1}{2} x$ identified or $\mathbf{B 1}$ for ruled line with gradient $-\frac{1}{2}$ or B1 for ruled line through $(0,4)$ but not $y=4$
	0.2 to $0.3 \quad 4.2$ to 4.3	B1	
11(a)	20	2	M1 for $\frac{360}{18}$ or $180-\frac{16 \times 180}{18}$
11(b)	4.5	2	M1 for $\frac{B E}{6.75}=\frac{5.2}{5.2+2.6}$ oe
11(c)	$5.8[0]$ or 5.798 to 5.799	3	M2 for $2 \times \sqrt[3]{\frac{780}{32}}$ oe or M1 for $\sqrt[3]{\frac{780}{32}}$ or $\sqrt[3]{\frac{32}{780}}$ or $\frac{2^{3}}{l^{3}}=\frac{32}{780}$
11(d)	$Q N=N R$ [given]	B1	
	Two correct pairs of angles with reasons from angle $P Q N=$ angle $S R N$ alternate angle $Q P N=$ angle $R S N$ alternate angle $P N Q=$ angle $S N R$ [vertically] opposite	B2	B1 for any correct pair of angles with reason or two correct pairs of angles with no/wrong reasons
	ASA [implies congruent]	B1	dep on B1 B2

Question	Answer	Marks	Partial Marks
12(a)	13	1	
12(b)	$4 x-3$ final answer	2	M1 for 3-2(3-2x)
12(c)	-7 5	4	M1 for $x^{2}+2 x-35[=0]$ or $x^{2}+2 x=35$ M2 for $(x+7)(x-5)$ or $x(x-5)+7(x-5)$ or $x(x+7)-5(x+7)$ or M1 for $(x+a)(x+b)$ where a, b are integers with $a b=-35$ or $a+b=2$
12(d)	$\frac{3-x}{2}$ oe final answer	2	M1 for a correct first step: $x=3-2 y$ or $y-3=-2 x, 2 x=3-y$ or $\frac{y}{2}=\frac{3}{2}-x$
12(e)	$\begin{align*} & 32-54 x+37 x^{2}-8 x^{3} \\ & \text { final answer } \tag{oe} \end{align*}$	5	B4 for $27-36 x-18 x+24 x^{2}+12 x^{2}-8 x^{3}+x^{2}+5$ OR B1 for $(3-2 x)^{3}+x^{2}+5$ and B2 for expansion of the 3 brackets, allow one error or B1 for correct expansion of 2 of the brackets with at least 3 terms correct

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	0580/42
Paper 4 (Extended)	May/June 2021
MARK SCHEME	

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	11.61 final answer	2	M1 for $13.5[0] \times\left(1-\frac{14}{100}\right)$ oe or B1 for 1.89
1(a)(ii)	197.37 final answer	2	FT $17 \times$ their (a)(i) exact or correct to nearest cent M1 for $42.5 \div 2.5$
1(b)(i)	53.3 or 53.33...	1	
1(b)(ii)	7.5	2	M1 for $22.5 \div(2+8+5)$ oe soi
1(c)	20.55×2.45 oe	M2	M1 for $20.5+0.05$ oe seen or $2.4+0.05$ oe seen If 0 scored, $\mathbf{S C 1}$ here for 20.45×2.35 oe
	3 nfww	A2	M1 for their area $\div 10 \div 2.5$ oe
2(a)(i)	$1,-0.5$ oe	2	B1 for each
2(a)(ii)	Correct curve	4	B3FT for 6 or 7 correct plots or B2FT for 4 or 5 correct plots or B1FT for 2 or 3 correct plots
2(b)	$y=2.5-2 x$ ruled	B2	$\begin{aligned} & \text { B1 for } y=k-2 x \text { or } y=p x+2.5 \text { ruled } \\ & (p \neq 0) \\ & \text { or for }[y=] 2.5-2 x \text { oe identified } \end{aligned}$
	1.3 to 1.4	B1	
2(c)	-1	B1	
	$y=-1$	B1	FT their k (must be negative)
3(a)(i)	7^{11} cao	1	
3(a)(ii)	7^{10} cao	1	
3(a)(iii)	7^{2} cao	1	If answers 11, 10 and 2 in (a) then allow SC1 in this part
3(b)	$1000 x^{9} y^{12}$ final answer	3	B2 for correct answer seen or answer of the form $1000 x^{9} y^{k}$ or $1000 x^{k} y^{12}$ or $k x^{9} y^{12}$ or B1 for answer with one correct element in product or $\left(10 x^{3} y^{4}\right)^{[3]}$ seen
3(c)(i)	108	2	M1 for $[540=] 2^{2}[\times] 3^{3}[\times] 5$ or $\mathbf{B 1}$ for 108 oe not in prime factor form e.g. $2^{2} \times 3 \times 9$

Question	Answer	Marks	Partial Marks
3(c)(ii)	30240	2	M1 for $\left(540 \times 2^{5} \times 3^{3} \times 7\right) \div$ their $(\mathbf{c})(\mathbf{i})$ oe or B1 for answer 30240 oe not in prime factor form e.g. $2^{5} \times 3^{3} \times 35$
3(c)(iii)	98	2	B1 for 592704 seen or $2^{6} \times 3^{3} \times 7^{3}$ seen or 2×7^{2} oe seen
3(d)(i)	$(x-7)(x+4)$ final answer	2	M1 for $x(x-7)+4(x-7)$ or $x(x+4)-7(x+4)$ or better or for $(x+a)(x+b)$ where $a b=-28$ or $a+b=-3$
3(d)(ii)	$(a+2 b)(11 a+14 b)$ final answer	2	M1 for $(a+2 b)(7(a+2 b)+4 a)$ or $(a+p b)(11 a+q b)$ where $p q=28$ or $11 p+q=36$ If 0 scored, $\mathbf{S C} 1$ for $a+2 b(11 a+14 b)$
3(e)	$[y=] \frac{5 x-1}{2}$ oe final answer	4	B2 for $2 x-1=-2 x+2 y-x$ oe or B1 for $9^{x}=3^{2 x}$ or better M1dep for correct rearrangement of their 5 term 'linear' equation in y and x to make y the subject
4(a)(i)	Correct histogram	3	B1 for each correct block If 0 scored, SC1 for any two of fds 7.5 , 3.33..., 0.8 oe soi
4(a)(ii)	3.7875 or 3.79 or 3.787 or 3.788	4	M1 for $0.75,1.5,3,5.5,9.5$ soi M1 for $\Sigma f x$ M1 dep for their $\Sigma f x \div 40$
4(a)(iii)	$\frac{11}{40} \text { oe }$	1	
4(a)(iv)	$\frac{30}{203} \text { oe }$	3	M2 for $[2 \times] \frac{4}{29} \times \frac{15}{28}$ oe or M1 for $\frac{4}{29}$ or $\frac{15}{29}$ oe seen After 0 scored, SC1 for $[2 \times]\left(\frac{4}{40} \times \frac{26}{39}\right)$ oe or for answer $\frac{120}{841}$ oe
4(b)(i)	4.6	1	
4(b)(ii)	3.2	1	

Question	Answer	Marks	Partial Marks
4(b)(iii)	[median] remains the same oe and one is below [the median/middle] and one is above oe	2	B1 for each statement
5(a)(i)(a)	$\binom{5}{-13}$ final answer	1	
5(a)(i)(b)	$\binom{-4}{11}$ final answer	2	B1 for answer $\binom{-4}{k}$ or $\binom{k}{11}$ or $\binom{-6}{16}$ seen
5(a)(i)(c)	5.39 or 5.385...	2	M1 for $2^{2}+([-] 5)^{2}$
5(a)(ii)	$\begin{aligned} & {\left[\begin{array}{l} {[k=] 8} \\ {[m=]-32} \end{array}\right.} \end{aligned}$	3	B2 for $k=8$ or $m=-32$ or M1 for $-3+2 k=13$ oe or for $m=-5 \times$ their $k+8$ correctly evaluated
5(b)(i)(a)	$\mathbf{p}+\mathbf{q}$ final answer	1	
5(b)(i)(b)	$\frac{1}{2} \mathbf{p}-\frac{1}{2} \mathbf{q}$ or $\frac{1}{2}(\mathbf{p}-\mathbf{q})$ or $\frac{\mathbf{p}-\mathbf{q}}{2}$ final answer	2	M1 for unsimplified answer or any correct vector route for $\overrightarrow{C M}$, e.g. $-\mathbf{q}+\frac{1}{2} \text { their }(\mathbf{b})(\mathbf{i})(\mathbf{a})$
5(b)(i)(c)	$\frac{1}{2} \mathbf{p}+\frac{1}{10} \mathbf{q}$ or $\frac{5 \mathbf{p}+\mathbf{q}}{10}$ final answer	2	M1 for unsimplified answer or any correct vector route for $\overrightarrow{M N}$
5(b)(ii)	$\frac{5}{3} \mathbf{p}+\mathbf{q}$ or $\frac{5 \mathbf{p}+3 \mathbf{q}}{3}$ final answer	3	B2 for unsimplified correct answer OR M1 for $\mathbf{p}+\frac{3}{5} \mathbf{q}$ seen B1 for final answer of form $k \mathbf{p}+\mathbf{q}(k>1)$ or final answer $\frac{5}{3} \mathbf{p}+j \mathbf{q}$ oe (any j)
6(a)	$\sqrt{16^{2}+19^{2}-2 \times 16 \times 19 \cos 57}$ oe	M2	or M1 for $16^{2}+19^{2}-2 \times 16 \times 19 \cos 57$ A1 for 285.8 to 285.9
	16.90 to 16.91	A1	

Question	Answer	Marks	Partial Marks
6(b)	74.3 or 74.30 to 74.33	4	M2 for $[\sin \ldots=] \frac{16.9 \times \sin 75}{32}$ oe or M1 for $\frac{16.9}{\sin C}=\frac{32}{\sin 75}$ oe B1 for [angle $B C D=$] 30.7 or 30.67 to 30.69... or M1dep for 105 - their angle $B C D$
6(c)	388 or 387.7 to $387.9 \ldots$ nfww	3	M1 for $\frac{1}{2} \times 16 \times 19 \times \sin 57$ oe M1 for $\frac{1}{2} \times 16.9 \times 32 \times \sin$ their $\mathbf{(b)}$ oe
6(d)	13.4 or 13.41 to 13.42 nfww	3	M2 for $\frac{x}{16}=\sin 57$ oe or M1 for distance required is perpendicular to $A D$ soi
7(a)(i)	Triangle at (4, 0$)(4,3)(6,3)$	2	B1 for translation by $\binom{2}{k}$ or $\binom{k}{-1}$ If 0 scored SC1 for triangle at ($3,0.5$) $(3,3.5)(5,3.5)$
7(a)(ii)	Triangle at $(1,-2)(4,-4)(4,-2)$	2	B1 for rotation 90 clockwise wrong centre or for rotation 90 anticlockwise about the origin
7(a)(iii)	$\begin{aligned} & \text { Triangle at }(-4,4)(-4,2.5) \\ & (-5,2.5) \end{aligned}$	2	B1 for enlargement $\mathrm{SF}-\frac{1}{2}$ with wrong centre or for enlargement SF $\frac{1}{2}$ with centre $(-2,3)$
7(b)	Reflection $y=-x \text { oe }$	2	B1 for each
8(a)	$\begin{aligned} & {[L=] 11.8} \\ & {[W=] 5.9} \\ & {[H=] 7.1} \end{aligned}$	5	M1 for $L=2 W$ oe soi M1 for $W+2 H=20.1$ oe M1 for $2 L+2 H=37.8$ oe B1 for at least one correct answer
8(b)(i)	0.559 to $0.56[0 \ldots]$	B4	M2 for $\frac{1}{3} \times 18 \times 15 \times \sqrt{24^{2}-18^{2}}$ isw conversion or M1 for $h^{2}+18^{2}=24^{2}$ oe or better M1 for figs $800 \div$ figs their volume isw
	$\mathrm{g} / \mathrm{cm}^{3}$ or $\mathrm{g} \mathrm{cm}^{-3}$ final answer	B1	

Question	Answer	Marks	Partial Marks
8(b)(ii)	34.1 or 34.11 to 34.12	4	M3 for $\tan []=\frac{\sqrt{24^{2}-18^{2}}}{\sqrt{18^{2}+15^{2}}}$ oe or M2 for $\sqrt{18^{2}+15^{2}}$ isw or $\sqrt{24^{2}+15^{2}}$ isw or $\mathbf{M 1}$ for $18^{2}+15^{2}$ isw or $24^{2}+15^{2}$ isw or M1 for indicating required angle is $E B D$
9(a)(i)	2	2	M1 for $x\left(x^{2}-4 x+4\right)$ or $x(x-2)^{2}$ or $\left(x^{2}-2 x\right)(x-2)$ or $x^{3}-2 a x^{2}+a^{2} x$
9(a)(ii)	Correct sketch with curve passing through O and touching $(2,0)$		B1 for any positive cubic B1 for sketch through or touching O B1 for sketch with min or max touching x-axis once only but not at $(0,0)$ B1FT their (a)(i) for sketch with min or max touching x-axis at (their 2,0) and their 2 is labelled or clearly indicated
9(b)	$y=20 x-64$ final answer nfww	7	B6 for equivalent correct equation OR B2 for $3 x^{2}-8 x+4$ isw or $\mathbf{B 1}$ for $3 x^{2}$ or $-8 x$ seen M2dep for $[\mathrm{grad}=] 20$ soi nfww or M1dep for substituting 4 into their derivative isw B1 for $(4,16)$ soi M1dep for $16=$ their $20 \times 4+c$ oe
10	$125 n^{3}$ oe final ans	B2	B1 for 125 B1 for n^{3}
	$296 n-1$ oe final ans	B3	B1 for 29 B2 for $6 n-1$ oe or B1 for $6 n+k$ or $a n-1(a \neq 0)$
	2^{n-3} oe final ans	B2	B1 for $2^{n[+k]}$ oe
	$256 n-1-2^{n-3}$ oe final ans OR $25.25 \quad-\frac{1}{24} n^{3}+\frac{1}{8} n^{2}+\frac{17}{3} n-1$ oe final ans	B2	FT their 29-4 and their $6 n-1-$ their 2^{n-3} B1FT for each OR B1 for each

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	0580/43
Paper 4 (Extended)	May/June $\mathbf{2 0 2 1}$
MARK SCHEME	

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	120	2	M1 for $6 \div(21-19)$ oe soi or for $\frac{2 x}{40}=6$
1(a)(ii)(a)	34	2	M1 for $40-\frac{15}{100} \times 40$ oe or better or B1 for 6
1(a)(ii)(b)	35	2	M1 for $\left(1-\frac{15}{100}\right) \times p=29.75$ or better
1(b)(i)	44274 cao	3	B2 for 44273 to 44274 or 44270 or M1 for $40100 \times\left(1+\frac{2}{100}\right)^{5}$ oe
1(b)(ii)	2019 nfww	3	M2 for one correct trial of $n=8$ or $n=9$ either to find a salary or, if working with 1.02^{n} and $47500 \div 40100[=1.1845]$, to find a value of 1.02^{n} or B2 for final answer 9 or 4 nfww or M1 for their $44274 \times\left(1+\frac{2}{100}\right)^{n}=47500$ oe or $40100 \times\left(1+\frac{2}{100}\right)^{n}=47500$ oe or for at least one trial giving a value greater than their 44274
1(c)	2.9 [increase]	2	M1 for $\left(1+\frac{5}{100}\right) \times\left(1-\frac{2}{100}\right)$ oe implied by 1.029 or $102.9[\%$]
2(a)(i)	-1	2	M1 for $3 \times 2^{2}-13$ oe
2(a)(ii)	$[\pm] \sqrt{\frac{y-t}{p}}$ oe final answer	3	M1 for correct rearrangement to isolate x^{2} term M1 for correct division by p M1 for correct square root Incorrect answer scores a maximum of M2 If 0 scored, SC 1 for a correctly rearranged formula with $p=3$ and $t=-13$ substituted

Question	Answer	Marks	Partial Marks
2(b)(i)	$(5 x-4)(3 x+2)$ oe final answer	2	B1 for $(a x+b)(c x+d)$ where either $a c=15$ and $b d=-8$ or $a d+b c=-2$ or $5 x(3 x+2)-4(3 x+2)$ or $3 x(5 x-4)+2(5 x-4)$ or correct factors seen and spoiled
2(b)(ii)	$\frac{4}{5}$ oe and $-\frac{2}{3}$ oe	1	FT a factorised quadratic
2(c)	$x(x+4 y)(x-4 y)$ final answer	3	B2 for $\left(x^{2}+4 x y\right)(x-4 y)$ or $(x+4 y)\left(x^{2}-4 x y\right)$ or answer in the form $x(a+b)(a-b)$ or correct answer seen and spoiled or B1 for $x\left(x^{2}-16 y^{2}\right)$ oe or $(x+4 y)(x-4 y)$
2(d)	$\frac{1-2 a}{x}$ oe final answer	4	$\begin{array}{\|l} \text { B2 for }(2 x-1)(1-2 a) \text { oe } \\ \text { or } \mathbf{B 1} \text { for } 2 x-1-2 a(2 x-1) \\ \text { or } 2 x(1-2 a)-(1-2 a) \\ \text { B1 for } x(2 x-1) \end{array}$
3(a)(i)	4	1	
3(a)(ii)	7	1	
3(a)(iii)	8	1	
3(b)(i)	14	1	
3(b)(ii)	4	2	B1 for [1.q. =] 11 or [u.q =] 15
3(c)	8.09	3	M1 for $5 \times 3+10 \times 6+43 \times 7+75 \times 8+$ $48 \times 9+21 \times 10$ $\text { M1 dep } \div 200$
3(d)	$30,70,40,36,24$ seen	B2	B1 for 3 or 4 correct or $\begin{aligned} & \text { M1 for } 1 \times(80-50), 3.5 \times(100-80), \\ & 4 \times(110-100), 3.6 \times(120-110) \text { and } \\ & 0.6 \times(160-120) \text { oe } \end{aligned}$
	$\begin{aligned} & \text { (their } 30 \times 65+\text { their } 70 \times 90 \\ & + \text { their } 40 \times 105+\text { their } 36 \times 115 \end{aligned}$ $+ \text { their } 24 \times 140) \div 200$	M3	M1 for midpoints soi M1 for $\Sigma f x, x$ in interval or boundary of interval M1 dep on second M1 for $\div 200$
	99.75	A1	
4(a)(i)	$(2,7)$	2	B1 for each coordinate

Question	Answer	Marks	Partial Marks
4(a)(ii)	$-\frac{1}{2} x+8 \text { oe }$	4	Correct equivalent in different form scores 3 marks. M1 for gradient of $A B=\frac{9-5}{3-1}$ or $\frac{4}{2}$ or 2 M1 dep for gradient $p=-\frac{1}{\text { their grad of } A B}$ M1 (dep on previous M1) for substitution of their midpoint into $y=($ their $p) x+c$ oe where their $p \neq 0$
4(b)(i)	$\binom{0}{2}$	2	B1 for $\binom{0}{k}$ or $\binom{k}{2}$
4(b)(ii)	$\binom{-2}{9}$	2	$\begin{aligned} & \text { FT } \text { their } \overrightarrow{P Q} \\ & \text { B1FT for }\binom{0}{6} \end{aligned}$
4(c)(i)	$\frac{2}{3} \mathbf{t}+\frac{1}{3} \mathbf{u}$ or $\frac{1}{3}(2 \mathbf{t}+\mathbf{u})$ final answer	2	M1 for $\overrightarrow{U Y}=\frac{2}{3}(\mathbf{t}-\mathbf{u})$ oe or $\overrightarrow{T Y}=\frac{1}{3}(\mathbf{u}-\mathbf{t})$ oe or correct route soi
4(c)(ii)	$\frac{2}{3} t$	1	
5(a)	$\begin{aligned} & {[x=] 7} \\ & {[y=] 3} \end{aligned}$	2	B1 for each
5(b)	$\begin{aligned} & {[x=] 0,[y=] 2} \\ & {[x=]-3,[y=] 5} \end{aligned}$	4	B3 for $x=0$ and $x=-3$ or B2 for $x^{2}+3 x=0$ or M1 for $2-x=x^{2}+2 x+2$ If 0 scored award B1 for $x=0, y=2$ or $x=-3, y=5$ from no/incorrect working ALTERNATIVE B3 for $y=2$ and $y=5$ or $\mathbf{B 2}$ for $y^{2}-7 y+10=0$ or M1 for $y=(2-y)^{2}+2(2-y)+2$ If 0 scored award B1 for $x=0, y=2$ or $x=-3, y=5$ from no/incorrect working

Question	Answer	Marks	Partial Marks
6(a)		2	i.e. 8,10 and 5 correctly placed B1 for 10 correctly placed or M1 for $18-x, x$ and $15-x$ correctly placed on diagram and $x=10$ seen
6(b)	10	1	FT their Venn diagram
6(c)	5	1	FT their Venn diagram
6(d)	$\frac{5}{24}$ oe	1	FT their 5 on the Venn diagram
6(e)	0	1	
6(f)	$\frac{5}{17} \text { oe }$	3	M2 for $\frac{\text { their } 10}{18} \times \frac{\text { their } 9}{17}$ or B1FT for $\frac{\text { their } 10}{18}$ or $\frac{\text { their } 9}{17}$ seen After 0 scored, SC1 for answer $\frac{25}{81}$ oe
7(a)	$-2<x \leqslant 1$	2	B1 for $-2<x$ or $x \leqslant 1$
7(b)(i)	$(x+2)^{2}-3$	2	M1 for $(x+2)^{2}+k$
7(b)(ii)	$(x+2)^{2}=3$	M1	FTdep their (b)(i) for $k<0$
	$\begin{aligned} & -3.73 \text { or }-3.732 \ldots \text { and } \\ & -0.268 \text { or }-0.2679 \ldots \end{aligned}$	B1	
7(b)(iii)	$(-2,-3)$	2	FT their $(x+2)^{2}-3$ B1 for each coordinate
7(b)(iv)	Correct sketch	2	Parabola with minimum point in correct quadrant and both x-intercepts negative and positive y-intercept B1 for parabola with minimum point.

Question	Answer	Marks	Partial Marks
8(a)(i)	1200	1	
8(a)(ii)(a)	800	3	M2 for $[2 \times](20 \times 12+20 \times 5+12 \times 5)$ or M1 for 20×12 or 20×5 or 12×5
8(a)(ii)(b)	0.19	1	FT $152 \div$ their 800
8(b)	$\frac{3 x}{2} \text { or } 1.5 x$	3	B2 for $r^{3}=\frac{27 x^{3}[\pi]}{8[\pi]}$ or better or M1 for $\frac{4}{3} \pi r^{3}=\pi x^{2} \times \frac{9 x}{2}$
8(c)	13.6 or 13.59 to 13.61	7	If chord is $A B$ and O is centre of the cross section M2 for $2 \times \cos ^{-1}\left(\frac{20-5}{20}\right)$ oe or M1 for $\cos =\frac{20-5}{20}$ oe M1 for $\frac{\text { theirAOB }}{360} \times \pi \times 20^{2}$ or $\frac{1}{2}(20)^{2}\left(\frac{82.8 \pi}{180}\right)$ M1 for $\frac{1}{2} \times 20^{2} \times \sin ($ their $A O B)$ oe M1 for their area $\times 150$ M1 for their volume $\div 1000$
9(a)	42.3 or 42.28 to 42.30...	7	M1 for $\frac{A B}{14}=\cos 35$ oe M1 for $\frac{A D}{14}=\sin 35$ oe B1 for [$C=] 75$ M3 for $[\mathrm{BC}=] \frac{14 \sin 60}{\sin \text { their } 75}$ oe and $[\mathrm{DC}] \frac{14 \sin 45}{\sin \text { their } 75}$ oe or $\mathbf{M} 2$ for $\frac{14 \sin 60}{\sin \text { their } 75}$ or $\frac{14 \sin 45}{\sin \text { their } 75}$ oe or M1 for $\frac{\sin \text { their } 75}{14}=\frac{\sin 60}{B C}$ oe or $\frac{\sin \text { their } 75}{14}=\frac{\sin 45}{C D}$ oe

Question	Answer	Marks	Partial Marks
9(b)(i)	4.91 or 4.907...	3	B2 for $\left[l^{2}=\right] 24.1$ or 24.08... or M2 for $\sqrt{ } 3 l=8.5$ or $[l=] \sqrt{\frac{8.5^{2}}{3}}$ oe or M1 for $l^{2}+l^{2}+l^{2}=8.5^{2}$ oe
9(b)(ii)	35.3 or 35.26 to 35.3 nfww	3	M2dep for $\sin ($ angle $)=\frac{\text { their }(\mathbf{b})(\mathbf{i})}{8.5}$ oe or M1 for clear recognition of correct angle
10(a)(i)	4	1	
10(a)(ii)	3	1	
10(a)(iii)	13	1	FT $5 \times$ their (a)(i) - 7
10(b)	$\frac{x+2}{3}$ final answer	2	M1 for $y+2=3 x$ or for $\frac{y}{3}=x-\frac{2}{3}$ or for $x=3 y-2$
10(c)	$9 x^{2}-9 x+2$ final answer	3	M1 for $(3 x-2)^{2}+3 x-2$ B1 for $(3 x-2)^{2}=9 x^{2}-6 x-6 x+4$
10(d)	$2 x+1$	1	
10(e)(i)	81	1	
10(e)(ii)	x	1	Not $y=x$
11(a)(i)	-5	1	
11(a)(ii)	Subtract 4 oe	1	
11(a)(iii)	$15-4 n$ oe final answer	2	B1 for $k-4 n$ or $15-j n \quad j \neq 0$
11(b)(i)	$\frac{1}{21}$ or equivalent fraction	2	$\text { B1 for } \frac{12}{7} \text { and } \frac{10}{6}$
11(b)(ii)	$\begin{aligned} & n=\frac{3}{5} \text { oe } \\ & \text { or } \\ & 2 n \geqslant n+1 \text { but } 3<4 . \end{aligned}$	M2	M1 for $\frac{3}{4}=\frac{2 n}{n+1}$ oe or M1 for $2 n>n+1$ but $3<4$
	No, n is not an integer oe or No, $\frac{3}{4}$ is less than 1 , oe	A1	

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	$\mathbf{0 5 8 0 / 4 2}$
Paper 4 (Extended)	March $\mathbf{2 0 2 1}$
MARK SCHEME	

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the March 2021 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	245	1	
1(b)	8	2	M1 for $40+26.5 x=252$ oe or $\mathbf{B 1}$ for 212 seen
1(c)	6	2	M1 for $(224-2 \times 48) \div 32$ oe or $2 \times 48+32(x-2)=224$ soi
1(d)	35:36:32 final answer	2	B1 for their (a) : 252 : 224 or equivalent ratio
2(a)(i)	rotation 90 anticlockwise oe $(-3,2)$	3	B1 for each
2(a)(ii)	$\begin{aligned} & \text { enlargement } \\ & -\frac{1}{2} \\ & (-2,-1) \end{aligned}$	3	B1 for each
2(b)	Image at $(-3,-5)(1,-5)(1,3)$	2	B1 for translation by $\binom{-5}{k}$ or $\binom{k}{-10}$
2(c)	Image at $(2,3)(6,3)(6,-5)$	2	B1 for reflection in $y=k$ or $x=4$
3(a)	$\begin{aligned} & 126 \\ & 54 \\ & 117 \end{aligned}$	3	B1 for each
3(b)	angle [in a] semicircle is 90	B1	Do not accept triangle for angle
	Allied, co-interior [add to 180] or Angles in triangle [$=180$] and alternate oe	B1	
	32	B1	
3(c)	109	2	B1 for 218 or 71 in correct places or correctly labelled

Question	Answer	Marks	Partial Marks
4(a)	462	1	
4(b)(i)	$\frac{7}{15} \mathrm{oe}$	1	
4(b)(ii)	$\begin{aligned} & \frac{7}{15} \times \frac{6}{14}+\frac{6}{15} \times \frac{5}{14}+\frac{2}{15} \times \frac{1}{14} \\ & =\frac{37}{105} \end{aligned}$	3	M2 for addition of two of $\frac{7}{15} \times \frac{6}{14}+\frac{6}{15} \times \frac{5}{14}+\frac{2}{15} \times \frac{1}{14}$ or M1 for one of the products seen
4(b)(iii)	$\frac{29}{65} \mathrm{oe}$	4	M3 for $\frac{7}{15} \times \frac{6}{14} \times \frac{5}{13}+3 \times \frac{7}{15} \times \frac{6}{14} \times \frac{6}{13}+3 \times \frac{7}{15} \times \frac{6}{14} \times \frac{2}{13}$ oe or $1-3\left(\frac{8}{15} \times \frac{7}{14} \times \frac{7}{13}\right)-\left(\frac{8}{15} \times \frac{7}{14} \times \frac{6}{13}\right)$ oe or M2 for the sum of at least two of $\frac{7}{15} \times \frac{6}{14} \times \frac{5}{13}, N \times \frac{7}{15} \times \frac{6}{14} \times \frac{6}{13}, N \times \frac{7}{15} \times \frac{6}{14} \times \frac{2}{13}$ seen or for $\frac{7}{15} \times \frac{6}{14} \times \frac{13}{13}$ or $\frac{7}{15} \times \frac{6}{14}+N \times \frac{7}{15} \times \frac{6}{14} \times \frac{k}{13}$ seen or M1 for $\frac{7}{15} \times \frac{6}{14} \times \frac{5}{13}$ or $N \times \frac{7}{15} \times \frac{6}{14} \times \frac{6}{13}$ or $N \times \frac{7}{15} \times \frac{6}{14} \times \frac{2}{13}$ seen If 0 scored $\mathbf{S C} \mathbf{1}$ for $\frac{1519}{3375}$ oe
5(a)	$27[.0]$ or $26.97 \ldots$ nfww	3	M2 for $[\cos =] \frac{8.6^{2}+9.7^{2}-4.4^{2}}{2 \times 8.6 \times 9.7}$ or M1 for implicit form
5(b)	9.19 or 9.192 to 9.193	4	B1 for [angle $B C D=$] 73 seen M2 for $\frac{9.7 \times \sin 65}{\sin (180-65-42)}$ oe or M1 for $\frac{\sin (180-65-42)}{9.7}=\frac{\sin 65}{D C}$ oe

Question	Answer	Marks	Partial Marks
5(c)	6.15 or 6.149 to 6.151...	$\mathbf{3}$	M2 for $\frac{d}{\text { their } 9.19}=$ sin42 oe

and B D soi\end{array}\right]\)

Question	Answer	Marks	Partial Marks		
7(a)(iv)	$\begin{array}{l}\text { One general comment interpreting } \\ \text { the median comparison nfww } \\ \text { e.g. Students did better on second test } \\ \text { oe } \\ \text { OR } \\ \text { One general comment interpreting } \\ \text { IQR/range comparison nfww } \\ \text { e.g. Students marks were more } \\ \text { consistent on the 2nd test oe }\end{array}$	$\mathbf{1}$			
7 (b)	$\begin{array}{l}31.2\end{array}$	$\mathbf{4}$	$\begin{array}{l}\text { M1 for mid-values soi } \\ \text { M1 for } \Sigma f m \text { where } m \text { is any value in interval }\end{array}$		
including boundaries				$]$	M1 (dep on second M1) for their $\Sigma f m \div 50$
:---					

Question	Answer	Marks	Partial Marks
8(a)(i)	$\frac{53}{360} \times \pi \times 9.5^{2}$	M1	
	41.74 to 41.75	A1	
8(a)(ii)	$5.9[0]$ or 5.899 to 5.903 ..	4	M3 for $\left[O A^{2}=\right] \frac{\frac{1}{3} \times 41.7}{\frac{1}{2} \sin 53}$ oe M2 for $\frac{1}{2} \times O A^{2} \times \sin 53=\frac{1}{3} \times 41.7$ oe M1 for $\frac{1}{2} \times O A \times O B \times \sin 53=\frac{1}{3} \times 41.7$ seen or better
8(b)	396 or 397 or 396.4 to 396.6	6	M2 for $[r=]\left(\frac{60}{360} \times 2 \times \pi \times 24\right) \div 2 \pi$ oe or better or M1 for $2 \pi r=\frac{60}{360} \times 2 \times \pi \times 24$ oe M2 for $\sqrt{24^{2}-a^{2}}$ or M1 for $h^{2}+a^{2}=24^{2}$ M1 for $\frac{1}{3} \pi \times$ their $r^{2} \times$ their h
9(a)(i)	$(5 a-b)(m+2 p)$ final answer	2	M1 for $5 a(m+2 p)-b(m+2 p)$ or $m(5 a-b)+2 p(5 a-b)$ or B1 for correct answer seen
$9(\mathrm{a})(\mathrm{ii})$	$5(k+g)(3 k+3 g-4)$ final answer	2	M1 for correct partial factorisation by 5 or $(k+g)$ isw $\text { eg } 5\left(3 k^{2}+6 k g+3 g^{2}-4 k-4 g\right)$ or $5\left(3(k+g)^{2}-4(k+g)\right)$ or $(k+g)(15(k+g)-20)$ or $(5 k+5 g)(3 k+3 g-4)$ or B1 for correct answer seen
9(a)(iii)	$\left(2 x-y^{2}\right)\left(2 x+y^{2}\right)$ final answer	2	M1 for answer in form $(a+b)(a-b)$ or B1 for correct answer seen
9(b)	$3 x^{3}-10 x^{2}-x+12$ final answer	3	B2 for correct unsimplified expansion or simplified expression with 3 terms correct in a 4-term expression of required form or B1 for correct expansion of two of the brackets with at least 3 terms correct
9(c)	$\begin{aligned} & {[a=] 11} \\ & {[b=] 121} \end{aligned}$	2	B1 for each

Question	Answer	Marks	Partial Marks
10(a)	1600	3	B2 for answer figs 16 or M2 for $90.72 \div($ figs $45 \times$ figs $3 \times$ figs 42$)$ or $\mathbf{M 1}$ for volume $=$ figs $45 \times$ figs $3 \times$ figs 42 isw
10(b)	62.8 or 62.83 to 62.84	3	M2 for $\frac{\pi \times 10^{2} \times 30}{15000} \times 100$ or M1 for $\pi \times 10^{2} \times 30$
10(c)	12.9[0]	3	B2 for 86 OR M2 for $\frac{98.9}{1+\frac{15}{100}} \times 0.15$ oe or $98.9-\frac{98.9}{1+\frac{15}{100}}$ oe or M1 for $\left(1+\frac{15}{100}\right) a=98.9$ oe isw
10(d)	50	2	M1 for $3540 \div 70.8$
11(a)	$\frac{48}{x}$ final answer	1	Accept $48 \div x$
11(b)	$\text { their }(a)-\frac{60}{x+2}=4 \mathrm{oe}$	M1	FT their (a) provided expression in x
	$48(x+2)-60 x=4 x(x+2)$ oe	M2	FT their 3 term eqn with algebraic denominators, x and $x+2$, for M2 or M1 M1 for common denominator $x(x+2)$ oe seen or any two terms in a 3 term equation from $\pm 48(x+2), \pm 60 x, \pm 4 x(x+2)$ oe seen
	$48 x+96-60 x=4 x^{2}+8 x \text { oe }$ $\text { leading to } x^{2}+5 x-24=0$	A1	With brackets expanded and no errors or omissions seen
11(c)	$(x-3)(x+8)$	B2	```B1 for \(x(x+8)-3(x+8)\) or \(\quad x(x-3)+8(x-3)\) or \(\quad(x+a)(x+b)[=0]\) where \(a b=-24\) or \(a+b=5\) [\(a, b\) integers \(]\)```
	3 and -8	B1	
11(d)	12	1	
12(a)	17	3	M2 for $3 \times 2 x^{2}-7$ or better isw or M1 for $3 \times 2 x^{2}$ oe or $k x^{2}-7$ seen

Question	Answer	Marks	Partial Marks
12(b)(i)	13.4 or 13.41 to 13.42	3	M2 for $\sqrt{(-5-7)^{2}+(8-2)^{2}}$ oe or M1 for $(-5-7)^{2}+(8-2)^{2}$ oe
12(b)(ii)	[$y=] 2 x+5$ final answer	4	M1 for [gradient of $A B=] \frac{8-2}{-5-7}$ oe M1dep for gradient $p=-1 \div$ their $-\frac{1}{2}$ oe M1dep on previous M1 for substituting $(-1,3)$ into $y=$ their $p x+c$ oe where their $p \neq 0$
12(b)(iii)	$(5,0)$	4	B3 for $\overrightarrow{A D}=\binom{-2}{-2}$ or $\overrightarrow{D A}=\binom{2}{2}$ or coordinates of $C \quad(-7,6)$ and $[\overrightarrow{C D}=]\binom{12}{-6}$ oe seen or $\mathbf{B} \mathbf{2}$ for $a=b=2$ soi or coordinates of $C \quad(-7,6)$ or M1 for $a=b$ oe soi or for $a^{2}+b^{2}=(\sqrt{8})^{2}$ oe or $\cos 45=\frac{a}{\sqrt{8}}$ oe or for $[\overrightarrow{D C}=]\binom{-12}{6}$ or $[\overrightarrow{C D}=]\binom{12}{-6}$ seen or $\frac{y-8}{x--5}=1$ oe or $\frac{y-2}{x-7}=1$

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	0580/41
Paper 4 (Extended)	October/November 2020
MARK SCHEME	

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

```
Abbreviations
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied
```

Question	Answer	Marks	Partial Marks
1(a)	Image at $(4,-1)(4,-4)(5,-4)$	2	B1 for translation by $\binom{8}{k}$ or $\binom{k}{-6}$ or for correct vertices not joined
1(b)	Image at $(-4,-4)(-4,-7)(-3,-4)$	2	B1 for reflection in $x=-1$ or $y=k$ or for correct vertices not joined
1(c)	$\begin{aligned} & \text { Enlargement } \\ & 3 \\ & (-5,5) \end{aligned}$	3	B1 for each
1(d)	Rotation 90° clockwise oe $(1,1)$	3	B1 for each
2(a)	1:5:12		$\text { M1 for } 2: 10: 24 \text { or } 7: 35: 84 \text { or } \frac{1}{18}: \frac{5}{18}: \frac{12}{18}$
2(b)(i)	266 and 95	3	B2 for 266 or 95 or 266 and 95 reversed or M1 for $\frac{114}{6}$
2(b)(ii)	15	2	M1 for $\frac{114-96.9}{114}[\times 100]$ oe or $\frac{96.9}{114} \times 100$
2(c)(i)	2h 50min	1	
2(c)(ii)	636	2	M1 for $1802 \div$ their 2 h 50 min
3(a)	Disagree: the median for the women is greater (than the median for the men) oe Disagree: the men have a smaller [interquartile] range of times oe	2	B1 for each correct statement oe
3(b)(i)	87.4 nfww	4	M1 for mid-points soi (30, 80, 130, 190, 270) M1 for use of $\Sigma f m$ with m in correct interval including both boundaries $\begin{aligned} & \text { M1 }\left(\text { dep on } 2^{\text {nd }} \text { M1 }\right) \text { for } \\ & \Sigma \mathrm{fm} \div(41+24+23+8+4) \end{aligned}$
3(b)(ii)(a)	90	1	
3(b)(ii)(b)	8	2	B1 for 92 seen

Question	Answer	Marks	Partial Marks
3(b)(iii)	2.4	2	$\begin{aligned} & \text { M1 for } \frac{24}{40} \text { or } \frac{8}{60} \\ & \text { Or B1 for [multiplier] } 18 \text { or } \frac{1}{18} \end{aligned}$
4(a)	38.6	3	M2 for $[2 \times](8.5+0.05+10.7+0.05)$ or M1 for $8.5+0.05$ or $10.7+0.05$
4(b)(i)	8.86 or 8.863...	2	M1 for $\frac{h}{9}=\sin 80$ or better oe
4(b)(ii)	$\angle \mathrm{CDF}=100$ leading to $\angle D C F=40$ Or $\angle \mathrm{EDF}=80$ leading to $\angle D C F=40$	M1	Implied by $180-(100+40)=40$ or $80-40$
	'two equal angles'	A1	With no incorrect work seen
4(b)(iii)	66.5 or 66.45 to $66.47 \ldots$	3	M2 for $0.5(3+12) \times$ their $(\mathbf{b})(\mathbf{i})$ or $12 \times$ their $(\mathbf{b})(\mathbf{i})-0.5 \times 9 \times 9 \times \sin 100$ oe or $\mathbf{B 1}$ for $D C=9$ or $B C=3$

Question	Answer	Marks	Partial Marks
4(c)	130 nfww or 129.6 to 129.8	5	B1 for $\angle A C D=21^{\circ}$ or $\angle C A D=69^{\circ}$ Method 1 M2 for $\cos 21=\frac{12}{A C}$ oe or M1 for $\angle A D C=90$ soi M1 for $\boldsymbol{\pi}(\text { their } A C / 2)^{2}$ OR Method 2 M2 for $\frac{12}{\sin 138}=\frac{r}{\sin 21}$ oe or M1 for $\angle \mathrm{COD}=138$ soi M1 for $\pi(\text { their } r)^{2}$ OR Method 3 M2 for $\cos 21=\frac{6}{\mathrm{OC}}$ oe or $\mathbf{M} 1$ for $\angle \mathrm{CXO}=90$ soi where X is the point where the perpendicular from O meets the chord CD M1 for $\pi(\text { their } \mathrm{OC})^{2}$
4(d)	78.4 or 78.37 to 78.41	3	M2 for $\frac{x}{360} \times 2 \times \pi \times 9.5+2 \times 9.5=4 \times 8$ oe or M1 for $\frac{x}{360} \times 2 \times \pi \times 9.5$ After M0, SC1 for $9.5 x+19=32$ oe
5(a)(i)	2.7 to 2.8	1	

Question	Answer	Marks	Partial Marks
5(a)(ii)	tangent ruled at $x=-2$	B1	
	6 to 10	2	dep on B1 or a close attempt at tangent at $x=-2$ or M1 for rise/run for their tangent, or close attempt, at any point Must see correct or implied calculation from a drawn tangent After M0, SC1 for gradient of tangent (or close attempt) in range embedded in $y=m x+c$
5(a)(iii)	$\begin{aligned} & y=2 x-2 \text { ruled } \\ & \text { and } x=-2.9 \text { to }-2.8 \text { cao } \end{aligned}$	3	B2 for correct ruled line or B1 for short line or for freehand line or broken line or ruled line with gradient 2 or with y-intercept at -2 (but not $y=-2$)
5(b)	$A(4,17) B(-1.5,0.5)$	5	B4 for ($-1.5,0.5$) and (4, 17), or for $x=4$ and $x=-1.5$ OR B3 for $\mathrm{A}(4,17)$ or $\mathrm{B}(-1.5,0.5)$ OR M1 for $2 x^{2}-2 x-7=3 x+5$ oe AND either M2 for $(2 x+3)(x-4)$ or M1 for $2 x(x-4)+3(x-4)$ or $x(2 x+3)-4(2 x+3)$ or $(2 x+c)(x+d)$ where $c d=-12$ or $c+2 d=-5$ [c and d are integers] OR M2 for $\frac{- \text { their } b \pm \sqrt{(\text { their } b)^{2}-4(\text { their } a)(\text { their } c)}}{2(\text { their } a)}$ or M1 for $\sqrt{(\text { their } b)^{2}-4(\text { their } a)(\text { their } c)}$ or for $p=-$ their $b, r=2($ their a) if in the form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$

Question	Answer	Marks	Partial Marks
6(a)(i)	106.01 to 106.02	4	M2 for $[\cos [\angle C B D]=] \frac{192^{2}+168^{2}-287.9^{2}}{2 \times 192 \times 168}$ oe or M1 for the implicit form A1 for -0.276 to -0.275
6(a)(ii)	292.0 or 291.98 to 291.99	1	
6(a)(iii)	310.0 or 310.03 to 310.04	5	$\begin{aligned} & \text { M2 for }[\sin A=] \frac{168 \times \sin (90-38)}{205.8} \\ & \text { or } \mathbf{M 1} \text { for } \frac{\sin A}{168}=\frac{\sin (90-38)}{205.8} \end{aligned}$ A1 for [$A=$] 40.0 or 40.03 to 40.04 M1 dep for $270+$ their angle $D A B$ oe
6(b)(i)	15500 or 15501 to 15503.	2	M1 for $0.5 \times 192 \times 168 \times \sin (106)$ oe
6(b)(ii)	55400	2	FT $3.575 \times$ their $(\mathbf{b})(\mathbf{i})$ oe rounded to nearest 100 M1 for figs $3575 \times$ figs their (b)(i) or figs 554 or figs 5541 to figs 5543
7(a)	$\begin{aligned} & 2536 \\ & 1015 \\ & 3551 \end{aligned}$	2	B1 for 3, 4 or 5 correct
7(b)	n^{2}	1	
7(c)(i)	92	1	
7(c)(ii)	$\frac{1}{2}\left(n^{2}-n\right) \text { oe }$	2	M1 for $\frac{1}{2}\left(3 n^{2}-n\right)-n^{2}$ oe or for final quadratic answer with $\frac{1}{2} n^{2}$ oe or $-\frac{1}{2} n^{2}$ oe but not both

Question	Answer	Marks	Partial Marks
7(d)	$a=\frac{1}{2}, b=\frac{1}{2}$	5	B2 for 2 correct equations eg $a+b=1,8 a+4 b=6$ or $\mathbf{B 1}$ for 1 correct equation B2 for one correct value or M1 (dep on at least B1) for correctly eliminating one variable from two linear equations in a and b OR B2 for $a=\frac{1}{2}$ or $\mathbf{B 1}$ for $6 \mathrm{a}=3$ or for $3^{\text {rd }}$ difference $=3$ B2 for $b=\frac{1}{2}$ or M1 for substituting their a into a correct equation of first differences
8(a)	$a b(3 a-b)$ final answer	2	B1 for $a\left(3 a b-b^{2}\right)$ or $b\left(3 a^{2}-a b\right)$ or $a b(3 a-b)$ seen
8(b)	$x>7.5$ final answer	2	B1 for $12+3<5 x-3 x$ oe
8(c)	$27 x^{6} y^{12}$	2	B1 for two of 27, x^{6} and y^{12} correct
8(d)	0.5 or $\frac{1}{2}$	3	M2 for $4=6 x+2 x$ or better or M1 for $2(2-x)=6 x$ oe
8(e)	$2 x^{3}+5 x^{2}-23 x+10$ final answer	3	B2 for correct expansion of three brackets unsimplified B1 for correct expansion of two brackets with at least 3 terms correct
8(f)(i)	$200\left(1+\frac{r}{100}\right)^{2}=206.46 \mathrm{oe}$	M1	
	$1+\frac{2 r}{100}+\frac{r^{2}}{100^{2}} \text { oe }$	M1	
	$r^{2}+200 r-323=0$	A1	Correct solution reached with no errors or omissions seen If 0 scored, $\mathbf{S C 1}$ for $200(n)^{2}=206.46$

Question	Answer	Marks	Partial Marks
8(f)(ii)	$\frac{-200+\sqrt{200^{2}-4(1)(-323)}}{2 \times 1}$	B2	B1 for $\sqrt{200^{2}-4(1)(-323)}$ or $(r+100)^{2}$ B1 for $\frac{-200+\sqrt{q}}{2 \times 1}$ or $r=\sqrt{323+100^{2}}-100$ OR B2 for $100\left(\sqrt{\frac{206.46}{200}}-1\right)$ or B1 for $\sqrt{\frac{206.46}{200}}$
	1.60 cao final answer	B1	
9(a)(i)		2	B1 for two correct values Or B1 5 outside and total in $\mathrm{G}=15$ and total in S $=18$
9(a)(ii)	$\frac{3}{8} \text { oe }$	1	FT $\frac{\text { their } 12}{32}$
9(a)(iii)	$\frac{2}{5} \mathrm{oe}$	1	$\text { FT } \frac{\text { their } 6}{15}$
9(b)	96	2	M1 for $\frac{36}{64}=\frac{54}{x}$ oe or $36=\frac{54}{(54+b)} \times 100$ oe If 0 scored $\mathbf{S C} 1$ for answer 150
9(c)(i)	$\frac{9}{25} \text { oe }$	2	M1 for $\frac{15}{25} \times \frac{15}{25}$ oe
9(c)(ii)	$\frac{16}{25} \text { oe }$	1	FT 1 - their (c)(i)
9(d)	$\frac{17}{20} \text { oe }$	3	M2 for $1-\frac{10}{25} \times \frac{9}{24}$ oe or for $\frac{15}{25} \times \frac{14}{24}+\frac{15}{25} \times \frac{8}{24}+\frac{15}{25} \times \frac{2}{24}+\frac{8}{25} \times \frac{15}{24}$ $+\frac{2}{25} \times \frac{15}{24}$ oe or M1 for one correct relevant product

Question	Answer	Marks	Partial Marks
10(a)(i)	$\begin{aligned} & A(-4,0) \\ & B(1,0) \\ & C(0,-4) \end{aligned}$	4	B3 for A and B correct Or B2 for B $(-4,0)$ and A $(1,0)$ Or B1 for $(x+4)(x-1)$ or for $\frac{-3 \pm \sqrt{3^{2}-4 \times 1 \times-4}}{2}$ oe and B1 for A or B correct B1 for $\mathrm{C}(0,-4)$ OR SC2 for $-4,1$ and -4 in correct positions on the graph
10(a)(ii)	$2 x+3[\pm 0]$ final answer	2	B1 for answer $2 x+c$ or for $a x+3, a \neq 0$ or for correct answer seen
10(a)(iii)	$y=7 x-8$ oe	3	B2 for answer $7 x-8$ OR M1 for [gradient =] 2(2) +3 FT their part (a)(ii) of the form $a x+b$ M1dep for substitution of $(2,6)$ into $y=$ their $m x+c$ oe
10(b)(i)	Correct sketch	2	B1 for one correct section out of 4 OR B1 for two properties correct from - Crosses x-axis at $(0,0)(180,0)$ and $(360,0)$ only - Correct curvature in each section of 90° - Asymptotes at $x=90$ and $x=270$
10(b)(ii)	125.5 or 125.53 to 125.54 and 305.5 or 305.53 to 305.54	3	B2 for one correct angle or B1 for -54.5 or $-54.46 \ldots$ or for 2 angles with a difference of 180 .

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	0580/42
Paper 4 (Extended)	October/November 2020
MARK SCHEME	

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

```
Abbreviations
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied
```

Question	Answer	Marks	Partial Marks
1(a)	9080 cao	3	B2 for 9078 to $9081 \ldots$ or M1 for $813 \times$ their 11 h 10 min
1(b)(i)	654 or 653.5...	2	M1 for $10260 \div 15 \mathrm{~h} \mathrm{42} \mathrm{min} \mathrm{oe}$
1(b)(ii)(a)	21.8 or 21.82 to 21.83	1	
1(b)(ii)(b)	4.58 or 4.59 cao	2	M1 for $470 \div(10260 \div 100)$ oe or $100 \div$ their $\mathbf{(b) (i i) (a) ~}$
1(c)	12.97	1	
2(a)	Translation $\binom{1}{-6}$	2	B1 for each
2(b)(i)	Image at $(0,1),(-3,1),(-3,2)$	2	B1 for reflection in $x=k$ or $y=1$
2(b)(ii)	Image at (5, -4), (5, -1), (4, -1)	2	B1 for rotation 90° anticlockwise with other centre or for rotation 90° clockwise about $(6,0)$
2(b)(iii)	Image at (-1, -2), (-7, -2), (-7, -4)	2	B1 for enlargement, factor -2 with other centre
3(a)(i)	2210 or 2208 or 2208.2, or $2208.16 \ldots$	2	M1 for $2000 \times\left(1+\frac{2}{100}\right)^{5}$ oe
3(a)(ii)	10.4 or 10.5 or 10.40 to 10.41	2	$\begin{aligned} & \text { M1 for } \frac{\text { their }(\mathbf{a})(\mathbf{i})-2000}{2000}[\times 100] \text { or } \\ & \frac{\text { their }(\mathbf{a})(\mathbf{i})}{2000} \times 100 \text { or }\left(1+\frac{2}{100}\right)^{5}-1 \text { or } \\ & \left(1+\frac{2}{100}\right)^{5} \times 100 \text { oe } \end{aligned}$
3(a)(iii)	12	3	B2 for 11.3 or 11.26 to 11.27 OR M2 for $[2000 \times]\left(1+\frac{2}{100}\right)^{11}$ oe or $[2000 \times]\left(1+\frac{2}{100}\right)^{12}$ oe seen or M1 for $[2000 \times]\left(1+\frac{2}{100}\right)^{n}$ oe, $n>5$ oe or for $2000 \times\left(1+\frac{2}{100}\right)^{n}=$ or $>$ or $\geqslant 2500$ oe

Question	Answer	Marks	Partial Marks
3(b)	490 cao	3	M2 for $p \times\left(1-\frac{4}{100}\right)^{16}=255$ oe soi by 490.0... or M1 for $p \times\left(1-\frac{4}{100}\right)^{n}=255$ oe, $n>1$ oe
4(a)(i)	25	1	
4(a)(ii)	10 nfww	2	B1 for [lq =] 22 or [uq =] 32
4(a)(iii)	27	1	
4(a)(iv)	6	2	B1 for 114 written
4(b)(i)	27.9 or 27.91 to 27.92 nfww	4	M1 for mid-values M1 for $\sum f x$ where x lies within or on boundary of correct interval M1 dep $\sum f x \div 120$ dep on second M1
4(b)(ii)	7.6	2	M1 for $\frac{18}{10}$ oe or $\frac{38}{20}$ oe or B1 for [multiplier] 4 or $1 / 4$
5(a)	1.48	3	B2 for $7 x+2=12.36$ or better or M1 for $3 x+2(2 x+1)[=12.36]$ or better
5(b)	$1.75 \text { or } 1 \frac{3}{4}$	3	B2 for $18 x-14 x=7$ or better or M1 for $18 x=7(2 x+1)$
5(c)	[0].8 oe	3	B2 for $4(2 x+1)=13 x$ or M1 for $\frac{4}{x}=\frac{13}{2 x+1}$ oe or correct equation to find number of cakes

Question	Answer	Marks	Partial Marks			
5(d)	$\frac{20}{x}+\frac{10}{2 x+1}=45$ oe	M2	B1 for $\frac{20}{x}$ seen or $\frac{10}{2 x+1}$ seen			
	$90 x^{2}-5 x-20[=0]$ oe	B2	B1 for $\frac{20(2 x+1)+10 x}{x(2 x+1)}=45$ or better	$	$	(9x+4)(2x-1)[=0] or for
:---						

Question	Answer	Marks	Partial Marks
7(c)(i)	-0.5 to -0.4	1	
7(c)(ii)	$\begin{aligned} & y=1-x \text { ruled } \\ & \text { and } \\ & -1.9 \text { to }-1.75 \end{aligned}$	2	M1 for $[y=] 1-x$ or $\left[x^{2}+\frac{1}{x}=\right] 1-x$ soi or $\mathbf{B 1}$ for -1.9 to -1.75
7(d)	Any integer ≥ 2	1	
8(a)	$\begin{aligned} & {[v=] 40} \\ & {[w=] 80} \\ & {[x=] 40} \\ & {[y=] 100} \\ & {[z=] 60} \end{aligned}$	5	B1 for each FT angle z as 140 - their w
8(b)	24	3	M2 for $360-11 x=2 \times 2 x$ oe or M1 for 360-11x seen or obtuse angle $K O L=2 \times 2 x$ oe
8(c)(i)	angle $A D X=$ angle $B C X$ oe same segment oe angle $D A X=$ angle $C B X$ oe same segment oe angle $A X D=B X C$ oe [vertically] opposite oe	M2	Accept in any order M1 for one correct pair with reason If 0 scored, $\mathbf{S C 1}$ for two correct pairs of equal angles identified with incorrect/no reasons
	corresponding angles are equal oe	A1	
8(c)(ii)(a)	8.75 or $83 / 4$	2	M1 for $\frac{8}{10}=\frac{7}{D X}$ oe
8(c)(ii)(b)	81.8 or 81.78 to 81.79	4	M2 for $[\cos [B X C]=] \frac{5^{2}+7^{2}-8^{2}}{2 \times 5 \times 7}$ oe or M1 for $8^{2}=5^{2}+7^{2}-2 \times 5 \times 7 \times \cos (\ldots)$ oe A1 for $\frac{10}{70}$ oe

Question	Answer	Marks	Partial Marks
9(a)	315 or 314.5 to 315.0	6	M1 for $\tan 70=\frac{\text { height }}{\frac{1}{2}(8-5)}$ oe or better seen M1dep for $\frac{1}{2}(8+5) \times$ their height or better seen dep on trig attempt for height M2 for $12 \times \frac{\frac{1}{2}(8-5)}{\cos 70}$ oe or better seen or M1 for $\frac{\frac{1}{2}(8-5)}{\cos 70}$ oe or better seen M1 for 8×12 oe isw and 5×12 oe isw
9(b)(i)	$8-1 / 2(8-5)$ or $5+1 / 2(8-5)$	M1	
9(b)(ii)	13.6 or 13.64 to 13.65	2	M1 for $12^{2}+(6.5)^{2}$ oe
9(b)(iii)	16.8 or 16.9 or 16.79 to $16.91 \ldots$ nfww	2	M1 for identifying angle $G A X$ from a diagram or from working or better
10(a)(i)	10	1	
10(a)(ii)	-19	1	FT 1-2 their (a)(i)
10(b)	$\frac{1-x}{2}$ oe final answer	2	M1 for $x=1-2 y$ or $y+2 x=1$ or $\frac{y}{2}=\frac{1}{2}-x$ or $y-1=-2 x$ or better
10(c)	$\frac{1}{2} \text { oe }$	1	
10(d)	$4 x^{2}-8 x+2$ final answer	4	M1 for $(1-2 x)(1-2 x)-(1-2(1-2 x))$ or better B1 for $1-2 x-2 x+4 x^{2}$ B1 for $-(1-2+4 x)$ or better or $[+] 1-4 x$ or for correct answer seen then spoiled
10(e)	x final answer	1	
10(f)	3125	1	
10(g)	25	1	
10(h)	-2	2	B1 for $\frac{1}{25}$ or 0.04
11(a)	A: -3 17-4n oe	3	B1 for - 3 B2 for $17-4 n$ oe or B1 for $k-4 n$ oe or $17-p n$ oe, $p \neq 0$

Question	Answer		Marks	Partial Marks
	B : 124	$n^{3}-1$ oe	3	B1 for 124 B2 for $n^{3}-1$ oe or B1 for any cubic
	$\mathrm{C}: \frac{11}{128}$	$\frac{n+6}{2^{n+2}}$ oe	4	B1 for $\frac{11}{128}$ B3 for $\frac{n+6}{2^{n+2}}$ oe or $\mathbf{B} 2$ for 2^{n+2} oe seen or B1 for 2^{k} oe or $n+6$ seen
11(b)	$\frac{p+1}{2 q} \text { oe }$		2	B1 for $p+1$ or $2 q$ oe

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	0580/43
Paper 4 (Extended)	October/November 2020
MARK SCHEME	

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).
GENERIC MARKING PRINCIPLE 3:
Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6
Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	$5.101[00 \ldots] \times 10^{8}$ final answer	1	
1(a)(ii)	361150800 oe	2	$\begin{aligned} & \text { FT } \text { their }(\mathbf{a})(\mathbf{i}) \\ & \text { M1 for } \frac{70.8}{100} \times 510100000 \\ & \text { or for } \frac{70.8}{100} \times \text { their } \mathbf{a}(\mathbf{i}) \end{aligned}$
1(b)(i)	6070 oe	1	
1(b)(ii)	32000 oe	2	B1 for figs 32
1(b)(iii)	6.68 or $6.677 \ldots$	2	M1 for $\frac{6.41 \times 10^{5}}{9.6[0] \times 10^{6}}[\times 100]$ oe
1(b)(iv)	1250 or 1248 to 1249 oe	2	B1 for figs 125 or figs1248 to figs 1249
1(c)(i)	25.1 or $25.08 \ldots$	2	M1 for $\frac{7.53\left[\times 10^{9}\right]-6.02\left[\times 10^{9}\right]}{6.02\left[\times 10^{9}\right]}$ oe or $\frac{7.53\left[\times 10^{9}\right]}{6.02\left[\times 10^{9}\right]} \times 100$
1(c)(ii)	1.33 or 1.325...	3	M2 for $\sqrt[17]{\frac{7.53\left[\times 10^{9}\right]}{6.02\left[\times 10^{9}\right]}}$ or $\sqrt[17]{1+\frac{\text { their }(\mathbf{c})(\mathbf{i})}{100}}$ or M1 for $6.02\left[\times 10^{9}\right] \times p^{17}=7.53\left[\times 10^{9}\right]$ or $p^{17}=1+\frac{\text { their }(\mathbf{c})(\mathbf{i})}{100}$
2(a)(i)	Triangle at ($-3,2$) (-3,3)(-5, 2)	2	B1 for correct rotation about incorrect point or for rotation 90 clockwise around $(0,0)$
2(a)(ii)	Triangle at ($5,-2)(6,-2)(5,0)$	2	B1 for translation by $\binom{3}{k}$ or $\binom{k}{-5}$
2(b)	Enlargement [SF] 3 [Centre] $(1,4)$	3	B1 for each
3(a)(i)	43	1	
3(a)(ii)	65	1	
3(a)(iii)	13	1	

Question	Answer	Marks	Partial Marks
3(b)	80	$\mathbf{3}$	M2 for $\frac{400}{18} \times \frac{60 \times 60}{1000}$ oe Or M1 for $\frac{400}{18}$ or for their speed in $\mathrm{m} / \mathrm{s} \times \frac{60 \times 60}{1000}$
(ar for $\frac{400}{1000}$ and $\frac{18}{60 \times 60}$ soi			

Question	Answer	Marks	Partial Marks
5(a)(iii)	123° Angles on a straight line [= 180] Opposite angles in a cyclic quadrilateral are supplementary oe	3	FT their acute (a)(ii) +42 B1 for each element
5(b)(i)	Angle $P T U=$ angle $P R Q$ corresponding Angle $P U T=$ angle $P Q R$ corresponding Angle $R P Q$ is common oe	M2	Accept in any order M1 for one correct pair with reason If 0 scored, SC1 for two correct pairs of equal angles identified with incorrect/no reasons
	Corresponding angles are equal oe	A1	
5(b)(ii)(a)	4:7 oe	1	
5(b)(ii)(b)	41.25 oe		M2 for $20 \times\left(\frac{7}{4}\right)^{2}$ oe or $20 \times \frac{7^{2}-4^{2}}{4^{2}}$ oe or M1 for $\left(\frac{7}{4}\right)^{2}$ or $\left(\frac{4}{7}\right)^{2}$ or $\frac{7^{2}-4^{2}}{4^{2}}$ or $\frac{4^{2}}{7^{2}-4^{2}}$
6(a)	440	2	M1 for $8 \times 5 \times 11$
6(b)	$\sqrt{8^{2}+5^{2}+11^{2}}$ oe or $8^{2}+5^{2}+11^{2}$ and 13^{2} ALTERNATIVE $\sqrt{8^{2}+11^{2}}$ or $8^{2}+11^{2}$ and 13^{2}	M3	M2 for $8^{2}+5^{2}+11^{2}$ or $8^{2}+11^{2}$ oe or M1 for $8^{2}+5^{2}$ or $5^{2}+11^{2}$ oe
	Yes and 14.5 or 14.4 or $14.49 \ldots$ or Yes and $13.6[0 \ldots]$	A1	Accept equivalent conclusion
6(c)(i)	32.0[...]	2	M1 for $\tan [.]=.\frac{5}{8}$ oe
6(c)(ii)	49.4 or 49.38 to 49.39	2	$\mathbf{M 1} \text { for } \sin [. .]=\frac{11}{\text { their } A G} \text { oe }$
7(a)(i)	$(8-x)(3+x)$	2	M1 for $8(3+x)-x(3+x)$ or $3(8-x)+x(8-x)$ or $(a-x)(b+x)$ where $a b=24$ or $a-b=5$

Question	Answer	Marks	Partial Marks
7(a)(ii)	$\begin{aligned} & {[a=]-3} \\ & {[b=] 8} \\ & {[\mathrm{c}=] 24} \end{aligned}$	3	FT their (a)(i) for a and b B1FT for each of a and b or both correct but reversed B1 for $[c=] 24$
7(a)(iii)	8	3	M2 for $5-2 x$ or M1 for $-2 x$ or $5-k x, k \neq 0$
7(b)(i)	Correct sketch: positive cubic shape and max on the y-axis or to the right of y-axis with one root at $(-1,0)$ and turning point at $(3,0)$ and y-intercept at $(0,9)$ all labelled	4	B1 for positive cubic shape with max on the y-axis or to the right of y-axis B1 for root at $(-1,0)$ B1 for turning point at (3,0) B1 for y-intercept $(0,9)$ If 0 score $\mathbf{S C 1}$ for all three intercepts on axes identified
7(b)(ii)	$x^{3}-5 x^{2}+3 x+9$ final answer	3	B2 for correct expansion of three brackets unsimplified B1 for correct expansion of two brackets with at least 3 terms correct
8(a)(i)	$\binom{4}{4}$	2	B1 for $\binom{4}{k}$ or $\binom{k}{4}$
8(a)(ii)	$\binom{-4}{8}$	2	B1 for $\binom{-4}{k}$ or $\binom{k}{8}$
8(a)(iii)	5.39 or 5.385..	2	M1 for $(-2)^{2}+5^{2}$ oe
8(b)(i)	$\mathbf{a}+\mathbf{b}$	1	
8(b)(ii)	$\frac{3}{2} \mathbf{a}+\mathbf{b}$	2	M1 for a correct route, e.g. $\overrightarrow{O A}+\overrightarrow{A E}$
8(b)(iii)	$2 \mathbf{a}+\frac{4}{3} \mathbf{b}$	3	M2 for unsimplified $\overrightarrow{O D}$ or for $\frac{4}{3} \mathbf{b}$ or M1 for $\overrightarrow{O D}$ attempted in terms of a and \mathbf{b} or for $\overrightarrow{C D}=\frac{1}{3} \mathbf{b}$ or $\overrightarrow{D B}=\frac{2}{3} \mathbf{b}$ seen
9(a)	2, 3, 4, 5	2	B1 for 3 correct and no extra or 4 correct and one extra or M1 for $1<x \leqslant 5$
9(b)(i)	$3 y(2 y-5 x)$	2	B1 for $3\left(2 y^{2}-5 x y\right)$ or $y(6 y-15 x)$ or for the correct answer seen and then spoiled

Question	Answer	Marks	Partial Marks
9(b)(ii)	$(y-3 x)(y+3 x)$	2	B1 for $(y+3)(y-3)$
9(c)	$\frac{4 x+5}{(x-1)(2 x+1)}$ or $\frac{4 x+5}{2 x^{2}-x-1}$ final answer	3	M1 for $3(2 x+1)-2(x-1)$ oe isw M1 for $(x-1)(2 x+1)$ oe isw
9(d)	$\begin{aligned} & (1.74,7.21 \text { to } 7.24) \\ & \text { and } \\ & (-3.74,-9.20 \text { to }-9.22) \text { cao } \end{aligned}$	6	For the y values accept any value rounded to 2 decimal places in the given range B5 for (1.74, 7.21 to 7.24) or ($-3.74,-9.20$ to -9.22) or $x=1.74$ and $x=-3.74$ OR M2 for $2 x^{2}+4 x-13=0$ or $2 y^{2}+4 y-133=0$ or M1 for $2 x^{2}+7 x-11=3 x+2$ or $y=2\left(\frac{y-2}{3}\right)^{2}+7\left(\frac{y-2}{3}\right)-11$ AND FT their quadratic expression (not $\left.2 x^{2}+7 x-11\right)$ M2FT for $\frac{-4 \pm \sqrt{4^{2}-4 \times 2 \times-13}}{2 \times 2}$ or $-1 \pm \sqrt{\frac{15}{2}}$ oe or M1FT for $\sqrt{4^{2}-4 \times 2 \times-13}$ oe or for $\frac{-4+\sqrt{k}}{2 \times 2}$ or $\frac{-4-\sqrt{k}}{2 \times 2}$ or $(x+1)^{2}[-13 / 2-1=0]$
10(a)	-23	2	M1 for 4-3(3) oe soi
10(b)	$\frac{4-x}{3}$ oe final answer	2	M1 for $x=4-3 y$ or $y+3 x=4$ or $x+3 y=4$ or $\frac{y}{-3}=\frac{4}{-3}+x \quad$ oe or $\frac{x}{-3}=\frac{4}{-3}+y \quad$ oe
10(c)(i)	$1+6 x$ final answer	2	M1 for 4-3(1-2x)

Question	Answer	Marks	Partial Marks
10(c)(ii)	$20-36 x$ or $4(5-9 x)$ final answer	4	B3 for 20-36x seen in working then spoiled OR M1 for $(4-3 x)^{2}+4-3 x-9\left(x^{2}+x\right)$ or better B1 for $\left[(4-3 x)^{2}=\right] 16-12 x-12 x+9 x^{2}$ or better B1 for answer $20-k x$ or $k-36 x$ oe or answer $20-36 x+k x^{2} \quad k \neq 0$
10(d)	$-\frac{1}{2}$ oe	2	M1 for $\left(3^{2}\right)^{k x}$ or $9^{k x}=9^{-\frac{1}{2} x}$ oe
11 A	24	B1	
	$5 n-1$ oe	B2	B1 for $5 n-k$ or $j n-1$ oe $j \neq 0$
11B	127	B1	
	$n^{3}+2$ oe	B2	B1 for n^{3} oe
11C	256	B1	
	$4^{(n-1)}$ oe	B2	B1 for 4^{k} oe

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	0580/41
Paper 4 (Extended)	May/June 2020
MARK SCHEME	

Maximum Mark: 130

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	7680	$\mathbf{2}$	M1 for 0.24×32000 oe
1(a)(ii)	34240	$\mathbf{2}$	M1 for $32000 \times \frac{100+7}{100}$ oe
1(b)	5306.04	$\mathbf{2}$	M1 for $5000 \times\left(1+\frac{2}{100}\right)^{3}$ oe

Question	Answer	Marks	Partial Marks
2(b)(i)	$\frac{14}{120} \text { oe }$	1	
2(b)(ii)	$\frac{21}{20060} \text { oe }$	4	M3 for $3\left(\frac{14}{120} \times \frac{7}{119} \times \frac{6}{118}\right)$ or M2 for $\frac{14}{120} \times \frac{7}{119} \times \frac{6}{118}$ isw or M1 for $\frac{14}{120}, \frac{7}{119}, \frac{6}{118}$ After 0 scored, SC1 for answer $\frac{343}{864000}$ or $\frac{343}{288000}$ oe
2(c)(i)	55, 79, 106, 120	2	B1 for 2 or 3 correct
2(c)(ii)	Correct diagram	3	B1 for correct horizontal plots B1FT for correct vertical plots B1FT dep on at least B1 for reasonable increasing curve or polygon through their 6 points If 0 scored SC1 for 5 out of 6 points correctly plotted
2(d)(i)	1.62 to 1.63	1	
2(d)(ii)	1.57 to 1.58	2	B1 for 48 soi
3(a)	75.6	2	M1 for $5.2 \times 7+\frac{1}{2} \times 1.6 \times 7^{2}$
3(b)(i)	$2 a-3 b$ final answer	2	B1 for answer $2 a+k b$ or $k a-3 b$ or for $2 a-3 b$ seen in working
3(b)(ii)	$\frac{3}{4}$	2	B1 for $\frac{45 x}{60 x}$ oe single fraction
3(c)(i)	-5	1	
3(c)(ii)	$-0.25 \text { or }-\frac{1}{4}$	3	M1 for $20-12 x=23$ or for $5-3 x=\frac{23}{4}$ M1 for correct completion to $a x=b \quad$ FT their first step
3(d)	$9 x^{6}$	2	B1 for $9 x^{k}$ or $k x^{6}$
3(e)	$6 x^{2}-7 x y-5 y^{2}$	2	M1 for 3 terms out of 4 from $6 x^{2}-10 x y+3 x y-5 y^{2}$

Question	Answer	Marks	Partial Marks
4(a)	$\begin{aligned} & \text { Triangle at }(-4,-4)(-1,-3) \\ & (-4,-3) \end{aligned}$	2	B1 for correct points not joined or for reflection in any $y=k$ or for reflection in $x=-1$
4(b)	Triangle at (1, 1) $(1,4)(2,4)$	2	B1 for correct points not joined or rotation 90 clockwise around any point or rotation 90 anticlockwise around $(0,0)$
4(c)	Translation $\binom{5}{-6}$	2	B1 for translation or correct vector oe
5(a)	Correct Venn diagram	3	B2 for 8 or 9 numbers correct or B1 for 6 or 7 numbers correct
5(b)(i)	41, 43, 47	1	FT their Venn diagram
5(b)(ii)	44, 46, 49, 50	1	FT their Venn diagram
5(c)	0	1	FT their Venn diagram
6(a)	$y \geqslant x$ oe	1	
6(b)	$2.25 x+1.5 y \leqslant 22.5$ oe	M1	
	One step shown to $3 x+2 y \leq 30$	A1	
6(c)	$y=10$ ruled	1	Broken line
	$3 x+2 y=30$ ruled	B2	Solid line B1 for line passing through $(0,15)$ or $(10,0)$
	$y=x$ ruled	B1	Solid line
	Correct region indicated	B1	
6(d)	412	2	M1 for $(4,9)$ identified or for evaluation $40 x+$ $28 y$ for an integer point in the region $(x>0$ and y >0)
7(a)	$\begin{aligned} & {\left[B C^{2}=\right] 80^{2}+115^{2}-2 \times 80 \times} \\ & 115 \cos 72 \text { oe } \end{aligned}$	M1	
	118.06...	A2	A1 for 13939...

Question	Answer	Marks	Partial Marks
7(b)	67.8 or 67.9 or 67.83 to 67.88	3	M2 for $[\sin B=] \frac{115 \times \sin 72}{118.1}$ oe or M1 for $\frac{115}{\sin B}=\frac{118.1}{\sin 72}$ oe
7(c)(i)	255	3	B1 for bearing of B from A is 75 soi M1 for $180+75$ oe
7(c)(ii)	[00]7.2	2	M1 for their (c)(i) - their (b) -180
7(d)	11.8 or 11.82 to 11.83	3	M1 for $115 \div 35$ oe M1 for their speed in $\mathrm{m} / \mathrm{s} \times 60 \times 60 \div 1000$
7(e)	76.1 or 76.08 to 76.09	3	M2 for $\frac{\text { distance }}{80}=\sin 72$ oe or M1 for distance required is perpendicular to $A C$ soi
8(a)(i)	Correct sketch	2	B1 for correct shape but inaccurate
8(a)(ii)	Rotational [symmetry] order 2 [centre] (180, 0)	2	B1 for rotational [symmetry]
8(b)	48.6 or 48.59 to 48.60 and 131.4 or 131.40 to 131.41	3	B2 for 48.6 or 48.59 to 48.60 or 131.4 or 131.40 to 131.41 or M1 for $\sin x=0.75$ or better If 0 scored, SC1 for two answers adding to 180
8(c)(i)	$(x+5)^{2}-11$	2	M1 for $(x+5)^{2}+k$ or $(x+\text { their } 5)^{2}+14-(\text { their } 5)^{2}$ or $a=5$
8(c)(ii)	Sketch of U-shaped parabola with a minimum indicated at $(-5,-11)$ with no part of graph in $4^{\text {th }}$ quadrant	3	FT their $(x+5)^{2}-11$ provided in that form B1 for U shape curve B1FT for turning point at $(-5, k)$ or ($k,-11$)
9(a)	$39[.0]$ or 39.03 to $39.04 \ldots$	3	$\begin{aligned} & \text { M2 for } \frac{165}{360} \times 2 \times \pi \times 8+16 \\ & \text { or M1 for } \frac{165}{360} \times 2 \times \pi \times 8 \end{aligned}$
9(b)	2.71 or 2.708...	4	M3 for $\sqrt{\frac{\frac{165}{360}[\times \pi] \times 8^{2}}{4[\times \pi]}}$ oe or M2 for $r^{2}=\frac{\frac{165}{360}[\times \pi] \times 8^{2}}{4[\times \pi]}$ oe or M1 for $\frac{165}{360} \times \pi \times 8^{2}$ oe seen

Question	Answer	Marks	Partial Marks
9(c)(i)	3.67 or 3.666 to 3.667	2	M1 for $\frac{165}{360} \times 2[\times \pi] \times 8=2[\times \pi] \times r$ or better or for $\frac{165}{360}[\times \pi] \times 8^{2}=[\pi \times] r \times 8$ or better
9(c)(ii)	100 or 100.0 to $100.1 \ldots$ final answer	4	$\begin{aligned} & \text { M3 for } \frac{1}{3} \pi \times \text { their }(c)(i)^{2} \times \sqrt{8^{2}-\text { their radius }^{2}} \\ & \text { or M2 for } \sqrt{8^{2}-{\text { their }{ }^{2} \text { adius }}^{2}} \\ & \text { or M1 for }(\text { their }(\mathrm{c})(\mathrm{i}))^{2}+h^{2}=8^{2} \end{aligned}$
10(a)(i)	15.7 or 15.65 ...	3	M2 for $\sqrt{(4-10)^{2}+(4--3)^{2}}$ oe or M1 for $(-4-10)^{2}+(4--3)^{2}$ oe
10(a)(ii)	$\frac{-10-4}{4--3}[=-2] \text { oe }$	M1	
	$\begin{aligned} & 10=-2(-3)+\mathrm{c} \\ & \text { Or }-4=-2(4)+\mathrm{c} \end{aligned}$ and correct completion to $y=-2 x+4$	A1	
10(a)(iii)	$y=\frac{1}{2} x+\frac{11}{4}$ oe	4	M1 for grad $=1 / 2$ soi M1 for [midpoint $=$] $(1 / 2,3)$ M1 for substitution of $(1 / 2,3)$ into their $y=m x+$ c oe
10(b)(i)	$\left(-\frac{1}{3},-\frac{22}{27}\right)$ oe and $(-5,50)$	$\begin{array}{r}6 \\ \hline\end{array}$	B2 for $3 x^{2}+16 x+5$ Or B1 for one correct M1 for derivative $=0$ or their derivative $=0$ M1 for $[x=]-\frac{1}{3}$ and $[x=]-5$ B1 for $-\frac{22}{27}$ and 50
10(b)(ii)	$\left(-\frac{1}{3},-\frac{22}{27}\right)$ minimum $(-5,50)$ maximum with correct reasons	3	B2 for one correct with reason or M1 for correct attempt e.g. $2^{\text {nd }}$ derivatives, gradients or sketching

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	0580/42
Paper 4 (Extended)	May/June 2020
MARK SCHEME	

Maximum Mark: 130

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.

This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	14, 10	2	M1 for $24 \div(7+5)$
1(a)(ii)	$\frac{3}{350}$	2	B1 for correct fraction not in lowest terms
1(a)(iii)	120	1	
1(b)(i)	10.2[0]	2	M1 for $\frac{15}{100} \times 12$ oe or better
1(b)(ii)	45	2	M1 for $\frac{38.25}{1-\frac{15}{100}}$ oe
1(c)(i)	85	2	M1 for $\frac{500 \times 1.7 \times 10}{100}$ oe
1(c)(ii)	203 or 202.5 to 202.6	2	M1 for $200 \times\left(1+\frac{0.0035}{100}\right)^{365}$
1(c)(iii)	1.9	3	M2 for $\sqrt[6]{\frac{559.78}{500}}$ or M1 for $500\left(1+\frac{r}{100}\right)^{6}=559.78$
2(a)(i)	$\binom{6}{17}$	2	B1 for each
2(a)(ii)	6.4[0] or 6.403...	2	M1 for $4^{2}+5^{2}$
2(b)	$(1,2)$	1	
2(c)	$(0,-2)$	1	

Question	Answer	Marks	Partial Marks
2(d)	$\frac{1}{2} \mathbf{c}+\frac{1}{3} \mathbf{d}$	3	B2 for correct unsimplified answer or M1 for $\overrightarrow{C T}=-\mathbf{c}+\frac{2}{3} \mathbf{d}$ oe or $\overrightarrow{T C}=\mathbf{c}-\frac{2}{3} \mathbf{d}$ oe or for correct route
3(a)	41.4	4	M1 for $10,30,42.5,47.5,55,70$ M1 for $\Sigma f x$ where x lies in or on the boundary of each interval. M1 dep for $\frac{\Sigma f x}{200}$ dep on second M1
3(b)(i)	112, 170	1	
3(b)(ii)	Correct diagram	3	B1 for correct horizontal plot B1FT for correct vertical plots B1 FT dep on at least B1 earned for reasonable increasing curve or polygon through their 6 points If 0 scored SC1FT for 5 out of 6 points plotted correctly
3(b)(iii)(a)	48	1	
3(b)(iii)(b)	160	2	M1 for 40 seen
3(c)	$\frac{87}{3980} \text { oe }$	2	M1 for $\frac{30}{200} \times \frac{29}{199}$ oe
3(d)	Correct histogram	3	B1 for each column If 0 scored $\mathbf{S C 1}$ for correct frequency densities soi $1.25,12,1$
4(a)	65.4 or 65.36 to 65.37	3	$\begin{aligned} & \text { M1 for } 150^{2}+120^{2}-2 \times 150 \times 120 \cos 25 \\ & \text { A1 for } 4270 \text { or } 4272 \text { to } 4273 \end{aligned}$
4(b)	125 or 124.7 to 124.8	4	B1 for [angle $S=$] 80 M2 for $\frac{150 \sin 55}{\sin \text { their } 80}$ or M1 for $\frac{\sin \text { their } 80}{150}=\frac{\sin 55}{R S}$ oe
4(c)	10400 or 10410 to 10440 nfww	3	M1 for $\frac{1}{2} \times 120 \times 150 \sin 25$ oe M1 for $\frac{1}{2} \times 150 \times$ their (b) $\sin 45$ oe

Question	Answer	Marks	Partial Marks
5(a)	[0]38 or [0]37.9 or [0]37.87...	2	M1 for $\tan =\frac{350}{450}$ oe If 0 scored, $\mathbf{S C 1}$ for answer [0]52 or [0]52.1 or [0]52.12 to [0]52.13
5(b)	624 or 623.8 to 623.9	6	M2 for $450-400 \sin 50$ or M1 for $\sin 50=\frac{\ldots}{400}$ M2 for $350+400 \cos 50$ or M1 for $\cos 50=\frac{\ldots}{400}$ M1 for $(\text { their }(450-400 \sin 50))^{2}+($ their $(350+$ $400 \cos 50))^{2}$
5(c)	10 min 8 s	4	B3 for 10.1 or 10.13... or M2 for $(400+350+450+$ their $D A) \div 3[\div 60]$ oe or M1 for any distance $\div 3$ M1 for rounding their minutes into minutes and seconds to nearest second if clearly seen
6(a)	256	1	
6(b)	8	2	M1 for $3\left(x^{2}+1\right)+2$ or for $3(2)+2$
6(c)	$9 x^{2}+12 x+5$	3	M1 for $(3 x+2)^{2}+1$ B1 for $\left[(3 x+2)^{2}=\right] 9 x^{2}+6 x+6 x+4$ oe
6(d)	16	2	M1 for $3 x+2=7^{2}+1$ or better
6(e)	$\frac{x-2}{3}$ oe final answer	2	M1 for $x=3 y+2$ or for $y-2=3 x$ or for $\frac{y}{3}=x+\frac{2}{3}$
6(f)	$\frac{4 x^{2}+2 x+1}{3 x+2}$ final answer	3	B1 for $x^{2}+1+x(3 x+2)$ or better seen M1 for common denominator $3 x+2$
6(g)	16	1	
7(a)	0.1	1	
7(b)(i)	$\begin{aligned} & 0.2 \text { oe } \\ & 0.6,0.3,0.1 \text { oe } \end{aligned}$	2	B1 for 0.2 B1 for 0.6, 0.3, 0.1
7(b)(ii)	0.48 oe	2	FT their 0.6 from tree diagram M1 for $0.8 \times$ their 0.6

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS

0580/43
Paper 4 (Extended)
May/June 2020
MARK SCHEME
Maximum Mark: 130

Published

Students did not sit exam papers in the June 2020 series due to the Covid-19 global pandemic.
This mark scheme is published to support teachers and students and should be read together with the question paper. It shows the requirements of the exam. The answer column of the mark scheme shows the proposed basis on which Examiners would award marks for this exam. Where appropriate, this column also provides the most likely acceptable alternative responses expected from students. Examiners usually review the mark scheme after they have seen student responses and update the mark scheme if appropriate. In the June series, Examiners were unable to consider the acceptability of alternative responses, as there were no student responses to consider.

Mark schemes should usually be read together with the Principal Examiner Report for Teachers. However, because students did not sit exam papers, there is no Principal Examiner Report for Teachers for the June 2020 series.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the June 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$ and Cambridge International A \& AS Level components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	1260	2	M1 for $15 \times 54+25 \times 18$
1(b)	38800	2	M1 for $37054 \div\left(1-\frac{4.5}{100}\right)$ oe
1(c)(i)	15:12:28	2	M1 for correct attempt to find a common multiple for the women oe
1(c)(ii)	216	3	M2 for $224 \div$ their $28 \times$ their $(15+12)$ or M1 for $224 \div$ their 28
1(d)	55.25	2	M1 for $8+0.5$ or $6+0.5$ seen
1(e)	156 or $156.3 \ldots$	2	M1 for $\left(1+\frac{1.5}{100}\right)^{30}$
2(a)(i)	triangle with vertices at $(-2,-1)(-8,-1)(-2,-5)$	2	B1 for correct reflection in $y=x$
2(a)(ii)	triangle with vertices at $(-1,-1)(-1,-7)(3,-7)$	2	B1 for translation by $\binom{k}{-9}$ or $\binom{-2}{k}$
2(b)(i)	Enlargement [centre] $(-7,8)$ [sf] $1 / 2$	3	B1 for each
2(b)(ii)	Rotation [centre] $(0,0)$ 90° clockwise oe	3	B1 for each
3(a)	correct diagram	4	B1 for median line correctly drawn at 148 B1 for 105 soi B1 for whisker at 159 soi
3(b)	6.48	3	M1 for $(5 \times 8)+(6 \times 2)+(12 \times 7)+\ldots$ M1dep for their $\sum \mathrm{f} x \div$ their $(8+2+12+2+$ $0+1)$
4(a)	$m \geq 3.4$ oe final answer	2	M1 for $12+5 \leq 8 m-3 m$ or better or $3 m-8 m \leq-5-12$ or better

Question	Answer	Marks	Partial Marks
4(b)	$x=-0.75$ oe	3	M1 for $15(2 x+5)=14(3-x)$ B1 for $30 x+75=42-14 x$ or better
4(c)	$\begin{aligned} & 3 x^{2}-16 x-35[=0] \text { or } \\ & 3 y^{2}-8 y-51[=0] \end{aligned}$	M3	M1 for $x^{2}+2(4-x)^{2}=67$ or $(4-y)^{2}+2 y^{2}=67$ seen B1 for $16-8 x+x^{2}$ or $16-8 y+y^{2}$
	$\begin{aligned} & (3 x+5)(x-7)[=0] \\ & \text { or }(3 y-17)(y+3)[=0] \end{aligned}$	M1	or for correct factors for their equation or for correct use of quadratic formula or completing the square for their equation
	$\begin{aligned} & x=7, y=-3 \\ & x=-\frac{5}{3}, y=5 \frac{2}{3} \end{aligned}$	B2	B1 for $x=7, x=-\frac{5}{3}$ or for $y=-3, y=5 \frac{2}{3}$ or for a correct pair of x and y values
5(a)	$\begin{aligned} & (4 x-5)(x+3)+(x+1)(x-3)=342 \\ & \text { or } \\ & 2 x(4 x-5)-(3 x-6)(x-3)=342 \end{aligned}$	M2	M1 for $(4 x-5)(x+3)$ or $(x+1)(x-3)$ or for $2 x(4 x-5)$ or $(3 x-6)(x-3)$
	$4 x^{2}+12 x-5 x-15$ oe and $x^{2}+x-3 x-3$ oe seen OR $8 x^{2}-10 x$ and $3 x^{2}-15 x+18$ seen	M2	M1 for each
	$\begin{aligned} & 5 x^{2}+5 x-18=342 \text { leading to } \\ & x^{2}+x-72=0 \end{aligned}$	A1	no errors or omission
5(b)	$(x+9)(x-8)$	M2	B1 for $(x+a)(x+b)$ where $a b=-72$ or $a+b=1$ and a, b are integers
	8, -9	B1	
5(c)	86	2	FT for $12 \times$ their $x-10$ (x positive) B1 for any one of $27,11,16$ seen or for $2 x+2 x+4 x-5+4 x-5$ oe or better soi
5(d)	22.2 or 22.16 to 22.17	2	M1 for $\tan =\frac{11}{27}$ or $\frac{\text { their } x+3}{4 \times \text { their } x-5}$
6(a)(i)	29.5 or $29.50 \ldots$	4	M2 for $\frac{11^{2}+5.3^{2}-6.9^{2}}{2 \times 11 \times 5.3}$ or M1 for $6.9^{2}=11^{2}+5.3^{2}-2 \times 11 \times 5.3 \cos x$ A1 for $0.87[0 \ldots]$ oe

Question	Answer	Marks	Partial Marks
6(a)(ii)	13.4 or 13.38...	4	B1FT 84 - their (a)(i) M2 for $\frac{11}{\sin 42} \times \sin$ their 54.5 or M1 for implicit form
6(b)	2700	4	M2 for $15 \times 2.5 \times 20 \times 60 \times 60$ or M1 for $15 \times 2.5 \times 20$ M1 for their volume $\div 1000$ If 0 scored, SC1 for figs 27 with no working
7(a)(i)	$\frac{3}{4}, \frac{1}{4} \quad \frac{2}{5}, \frac{3}{5} \quad \frac{2}{5}, \frac{3}{5}$	2	B1 for one correct pair
7(a)(ii)	$\frac{3}{10} \text { oe }$	2	FT their tree diagram M1 for $\frac{3}{4} \times \frac{2}{5}$
7(a)(iii)	$\frac{11}{20} \text { oe }$	3	M2 for $\frac{3}{4} \times \frac{3}{5}+\frac{1}{4} \times \frac{2}{5}$ or M1 for $\frac{3}{4} \times \frac{3}{5}$ or $\frac{1}{4} \times \frac{2}{5}$
7(b)	$\frac{36}{125} \text { oe }$	3	M2 for $\left(\frac{2}{5}\right)^{2} \times \frac{3}{5} \times 3$ oe or M1 for $\left(\frac{2}{5}\right)^{2} \times \frac{3}{5}$
7(c)	$\frac{3}{28} \text { oe }$	2	M1 for $\frac{3}{4} \times \frac{1}{7}$
8(a)	12	2	M1 for $150=\frac{(n-2) \times 180}{n}$ or $\frac{360}{180-150}$ oe
8(b)(i)	45	2	B1 for angles at M or $K=45$ or angle at $L=90$
8(b)(ii)	85	2	B1 for either angle in alt segment $=58$
8(b)(iii)	72	2	B1 for either angle at J or $H=108$ or angle at $F=72$
8(c)	$O A=O B=O C=O D$ Radii	B1	
	$A B=C D$ chords equidistant from centre are equal	B1	
	SSS implies congruent	B1	

Question	Answer	Marks	Partial Marks
9(a)(i)	$\frac{3}{8}$	2	M1 for $8 y=3 x+20$ or better
9(a)(ii)	$(0,2.5)$ oe	1	
(b)(i)	15.6 or $15.62 \ldots$	3	M2 for $\sqrt{(9--3)^{2}+(-2-8)^{2}}$ oe seen or M1 for $(9--3)^{2}$ or $(-2-8)^{2}$ oe seen
9(b)(ii)	$y=-\frac{5}{6} x+4 \mathrm{oe}$	3	M1 for gradient $\frac{-2-8}{9--3}$ oe M1 for substituting $(6,-1)$ into a linear equation oe
9(b)(iii)	$y=\frac{6}{5} x-\frac{3}{5} \text { oe }$	4	M1 for gradient $-1 /$ their $\left(-\frac{5}{6}\right)$ B1 for midpoint at $(3,3)$ M1 for their midpoint substituted into $y=$ their $m \times x+c$ oe
10(a)(i)	$x+5$	2	B1 for linear equation with positive gradient or intercept 5
10(a)(ii)	$2 \sin x$ oe	2	B1 for recognition of \sin or $\cos (x-90)$
10(b)	tangent ruled at P	B1	
	1.3 to 1.4	B2	dep on tangent drawn M1 for rise/run
11(a)	4	1	
11(b)	52	2	M1 for $\mathrm{f}(8)$ seen or $7 \times \frac{2 x}{x-3}-4$
11(c)	$7 x^{2}-4$	1	
11(d)	$\frac{7 x^{2}-21 x+12}{2(x-3)} \text { or } \frac{7 x^{2}-21 x+12}{2 x-6}$ final answer	3	M1 for $(7 x-4)(x-3)+2 \times 2 x$ B1 for denominator $2(x-3)$ or $2 x-6$
11(e)	-3	2	M1 for $7 x+14-4=-11$
11(f)	[$p=] 0$ and $[p=] 1$	2	B1 for each
12(a)(i)	$\left(-\frac{1}{2}, 4\right) \text { and }\left(\frac{1}{2}, 2\right)$	5	B2 for $12 x^{2}-3[=0]$ or B1 for $12 x^{2}$ or - 3 M1 for their derivative $=0$ or $\mathrm{d} y / \mathrm{d} x=0$ B1 for $[x=]-1 / 2$ and $1 / 2$ or one coordinate pair correct

Question	Answer	Marks	Partial Marks
12(a)(ii)	$\left(-\frac{1}{2}, 4\right)$ Max with reason $\left(\frac{1}{2}, 2\right)$ Min with reason	$\mathbf{3}$	B2 for one correct with reason or M1 for correct attempt to find e.g. 2nd derivative/gradients/sketch
$12(\mathrm{~b})$	line $y=x+3$ ruled	M2	B1 for $[y=] x+3$ identified or rules $y=x+k$ or $y=p x+3$
	-0.7 to -0.8 2.7 to 2.8	A1	

Cambridge IGCSE ${ }^{\text {TM }}$

MATHEMATICS	0580/42
Paper 4 (Extended)	March 2020
MARK SCHEME	

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2020 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).
GENERIC MARKING PRINCIPLE 3:
Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	295	$\mathbf{2}$	M1 for $[87+] 4 \times 52$ oe
1(a)(ii)	29.5 or $29.49 \ldots$	$\mathbf{1}$	FT $\frac{87}{\text { their }(\mathbf{a})(\mathbf{i})} \times 100$

Question	Answer	Marks	Partial Marks
2(b)(iii)	$\begin{aligned} & y=(4.4 \text { to } 5.6) x-(1.8 \text { to } 2.2) \\ & \text { or } \\ & {[y=] \text { their }(\mathbf{b})(\mathbf{i i}) x+\operatorname{their}(y-\text { intercept })} \end{aligned}$	2	FT for any line but not horizontal or vertical line for 2 marks or B1 B1FT for [$m=$] their 5 or for their y-intercept
3(a)	187	2	M1 for $220 \times\left(1-\frac{15}{100}\right)$ oe or $\mathbf{B 1}$ for 33 seen
3(b)	19.8	3	M2 for $29.7 \times \sqrt[3]{\frac{0.4}{1.35}}$ oe or M1 for $\sqrt[3]{\frac{0.4}{1.35}}$ or $\sqrt[3]{\frac{1.35}{0.4}}$ oe seen or for $\frac{29.7^{3}}{x^{3}}=\frac{1.35}{0.4}$ oe
3(c)	12.4 or 12.44..	3	M1 for $90 \times 75 \times h=7 \times$ figs 12 B1 for $1000 \mathrm{~cm}^{3}=1$ litre soi
4(a)	32.9 or 32.91 to $32.92 \ldots$	2	M1 for $\pi \times 1.65 \times 4.7+\pi \times 1.65^{2}$
4(b)	69.4 or 69.44 to 69.45	2	M1 for $\cos =1.65 \div 4.7$ oe
4(c)(i)	12.5 or 12.54 to 12.55	4	M3 for $\frac{1}{3} \times \pi \times 1.65^{2} \times \sqrt{4.7^{2}-1.65^{2}}$ oe or $\mathbf{M} \mathbf{2}$ for $\sqrt{4.7^{2}-1.65^{2}}$ oe or for $4.7 \times \sin ($ their $\mathbf{(b)})$ oe or M1 for $1.65^{2}+h^{2}=4.7^{2}$ oe or for $\frac{h}{4.7}=\sin ($ their $(\mathbf{b}))$ oe
4(c)(ii)	41 nfww	4	B3 for 41.7... to 41.9 or M2 for $\frac{4}{3} \times \pi \times 5^{3} \div$ their 12.5 or M1 for $\frac{4}{3} \times \pi \times 5^{3}$ After M2 scored, M1 for truncating their decimal number of cones seen to an integer answer
5(a)	$\frac{10 x}{(x-3)(x+2)} \text { or } \frac{10 x}{x^{2}-x-6}$ final answer	4	M1 for common denominator $(x-3)(x+2)$ isw M1 for $(x+3)(x+2)-(x-2)(x-3)$ isw B1 for correct numerator in terms of x only

Question	Answer	Marks	Partial Marks
5(b)	14	2	M1 for $12-\frac{k}{2}=5$ or $2^{\frac{k}{2}}=\frac{2^{12}}{2^{5}}$ oe or $\frac{4096}{32}$ or $12-5$ or $2^{12} \div 2^{\frac{14}{2}}[=32]$ seen
5(c)	$2 y^{3}-3 y^{2}-23 y+12$ final answer	3	B2 for correct unsimplified expanded expression or for simplified four-term expression of correct form with 3 terms correct or B1 for correct expansion of 2 of the brackets with at least 3 terms correct
5(d)	$[x=] \frac{3}{y-1}$ final answer	3	M1 for $x y=3+x$ M1 for $x y-x=3$ or $x-\frac{x}{y}=\frac{3}{y}$ M1 for factorising and dividing
6(a)(i)	$\frac{1}{3} \text { oe }$	1	
6(a)(ii)	100	1	FT their (a)(i) $\times 300$ to at least 3 sf or rounded to the nearest integer
6(b)(i)	$\frac{2}{15} \text { oe }$	3	M2 for $4 \times \frac{1}{6} \times \frac{1}{5}$ oe or M1 for $k\left(\frac{1}{6} \times \frac{1}{5}\right)$ oe or list or indication of 4 correct pairs
6(b)(ii)	$\frac{3}{5} \text { oe }$	3	M2 for $1-\frac{4}{6} \times \frac{3}{5}$ or $2\left(\frac{2}{6} \times \frac{4}{5}\right)+\frac{2}{6} \times \frac{1}{5}$ oe or $\frac{2}{6}+\left(\frac{4}{6} \times \frac{2}{5}\right)$ oe or M1 for $\frac{4}{6} \times \frac{3}{5}$ oe seen or $\frac{2}{6} \times \frac{4}{5}[\times 2]$ oe seen or $\frac{2}{6} \times \frac{1}{5}$ oe seen or correct identification of 18 pairs or space diagram oe
7(a)	$n-5+3 n+10>105$ or better	B1	
	$n>25$ final answer	B2	M1 for $4 n>100$

Question	Answer	Marks	Partial Marks
7(b)	4.8	3	M1 for $y=\frac{k}{x^{2}}$ or better M1 for $[y=] \frac{\text { their } k}{5^{2}}$ OR M2 for $y \times 5^{2}=7.5 \times 4^{2}$
7(c)(i)	$6-2 n$ oe final answer	2	B1 for answer $6-k n(k \neq 0)$ oe or answer $j-2 n$ oe or for correct expression shown in working and then spoilt
7(c)(ii)	$2 n^{2}-1$ oe final answer	2	B1 for 2 nd diff $=4$ or a quadratic expression or for correct expression shown in working and then spoilt
8(a)(i)	2.67 or 2.666...	3	M2 for $\frac{6 \times \sin 25}{\sin 72}$ or M1 for implicit version
8(a)(ii)	4.14 or 4.140...	3	M1 for $6^{2}+7.4^{2}-2 \times 6 \times 7.4 \times \cos 34$ A1 for 17.1 to 17.2
8(a)(iii)	20.4 or 20.35 to $20.36 \ldots$	4	B1 for angle $S Q R=83$ M1 for $\frac{1}{2} \times 6 \times \text { their } \mathbf{(a)} \mathbf{(i)} \times \sin \text { their }(180-72-25)$ oe M1 for $\frac{1}{2} \times 6 \times 7.4 \times \sin 34$ oe
8(b)(i)	8.7[0] or $8.695 \ldots$	4	B3 for $\sqrt{980}$ oe or 31.3 or $31.30 \ldots$ or M3 for $40-\sqrt{20^{2}+18^{2}+16^{2}}$ oe or M2 for $20^{2}+18^{2}+16^{2}$ oe or M1 for any correct attempt at 2-dimensional Pythagoras' e.g. $18^{2}+16^{2}$
8(b)(ii)	30.7 or 30.73 to $30.74 \ldots$	3	M2 for $[\sin =] \frac{16}{\sqrt{20^{2}+18^{2}+16^{2}}}$ oe or $\mathbf{B 1}$ for identifying angle $G A C$

Question	Answer	Marks	Partial Marks
9(a)		3	B2 for 5 correct entries including ' 2 ' correctly placed at the intersection of the 3 sets or M1 for $k+8-k+3-k+6-k=40-(7+9+11) \text { oe }$ or for $k, 8-k, 3-k, 6-k$, seen correctly placed on diagram with 7,11 and 9 correctly placed
9(b)	11	1	
9(c)	\varnothing or \{ \}	1	
9(d)	$\frac{7}{260} \text { oe }$	2	M1 for $\frac{7}{40} \times \frac{6}{39}$ oe
9(e)	$\frac{14}{95} \text { oe }$	2	FT their Venn diagram M1 for $\frac{8}{20} \times \frac{7}{19}$
10(a)(i)	$4 x-13$ final answer	1	
10(a)(ii)	$25 x^{2}$ final answer	1	
10(b)	$\frac{x+1}{4}$ or $\frac{x}{4}+\frac{1}{4}$	2	M1 for correct first step $x=4 y-1$ or $y+1=4 x$ or $\frac{y}{4}=x-\frac{1}{4}$
10(c)	0.6934 final answer	3	B2 for $0.69336 \ldots$ or $3^{-\frac{1}{3}}$ oe or 0.693 or M1 for $3^{-3^{-x}}$ oe
10(d)(i)	$(3 x-2)^{2}-3^{-(-3)}$	M1	
	$\begin{aligned} & 9 x^{2}-6 x-6 x+4-27 \text { or } \\ & 9 x^{2}-12 x+4-27 \\ & \text { leading to } 9 x^{2}-12 x-23 \end{aligned}$	A1	with no errors seen

Question	Answer	Marks	Partial Marks
10(d)(ii)	$\frac{-(-12) \pm \sqrt{(-12)^{2}-4(9)(-23)}}{2 \times 9}$ or better	B2	B1 for $\sqrt{(-12)^{2}-4(9)(-23)}$ oe or $\frac{-(-12)+\sqrt{q}}{2 \times 9}$ oe or $\frac{-(-12)-\sqrt{q}}{2 \times 9}$ oe or both
	- 1.07, 2.40 final answers	B2	B1 for each If $\mathbf{B 0}, \mathbf{S C 1}$ for answers -1.1 or -1.06 or $-1.065 \ldots$ to -1.065 and 2.4 or 2.39 or 2.398 to $2.398 \ldots$ or -1.07 and 2.40 seen in working or for -2.40 and 1.07 as final answer
10(e)	-5 final answer	2	M1 for $243=3^{-x}$
11(a)	$\begin{aligned} & (1,2) \\ & (-1,6) \end{aligned}$	5	B2 for [derivative oe $=13 x^{2}-3$ or B1 for [derivative oe $=$] $3 x^{2}$ or $\mathrm{f}(x)-3$ M1 for their derivative $=0$ or recognition of $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \mathrm{oe}$ B1 for $[x=]-1,1$ or for one coordinate pair
11(b)	$(1,2)$ minimum with reason $(-1,6)$ maximum with reason	3	Reasons could be e.g. a reasonable sketch correct use of $2^{\text {nd }}$ derivative $=6 x=6,6>0$, so $(1,2)$ minimum oe $2^{\text {nd }}$ derivative $=6 x=-6,-6<0$ so $(-1,6)$ maximum oe, or finds gradient on each side of both correct stationary points with correct conclusion B2 for 1 correct with reason or M1 for showing [$2^{\text {nd }}$ derivative $\left.=\right] 6 x$ or gradients for one value on either side of one correct stationary point or for reasonable sketch of cubic

MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	$\begin{aligned} & {[p=] 132} \\ & {[q=] 77} \end{aligned}$	3	B1 for $132[=p]$ B2 for 77 [$=q$] or M1 for $180-(55+48)$ oe or for their $p-55$
1(b)	74	3	B2 for $5 x-10=360$ or M1 for $x+(x+5)+(2 x-25)+(x+10)=360$ or for $5 x-10=k$
1(c)	175	3	M2 for $180-\frac{360}{72}$ or for $\frac{180(72-2)}{72}$ or M1 for $\frac{360}{72}$ or for $180(72-2)$
1(d)	$\begin{aligned} & {[u=] 30} \\ & {[v=] 60} \\ & {[w=] 60} \\ & {[x=] 120} \\ & {[y=] 40} \end{aligned}$	6	B1 for 30 B1 for 60 B1 for 60 FT their v B1 for 120 FT $2 \times$ their w B2 for 40 or $\mathbf{B 1}$ for angle $B D C=20$ or angle $A D O=30$ or angle $A D B=70$
1(e)	26	4	B3 for $360-22=10 x+3 x$ oe or better or for $5 x+1.5 x=180-11$ oe or better or M2 for $360-(3 x+22)=2 \times 5 x$ oe or for $5 x+\frac{1}{2}(3 x+22)=180$ oe or SC2 for $360+22=10 x+3 x$ oe or better or M1 for $180-5 x, 10 x$ or $360-(3 x+22)$ correctly placed on the diagram or identified or for angle $A+$ angle $C=5 x$
2(a)	$\begin{aligned} & \text { [Ali] } 2700 \\ & {[\mathrm{Mo}] 2100} \end{aligned}$	3	B2 for one correct or for correct values reversed or M1 for $600 \div(9-7)$ or for any equation that would lead to an answer of 300,2700 or 2100 , or 4800 (for the total)

Question	Answer	Marks	Partial Marks
2(b)	11	3	M2 for $\frac{220-195.8}{220}[\times 100]$ or for $[100-] \frac{195.8}{220} \times 100$ or M1 for 220 - 195.8 or for $\frac{195.8}{220}$ or a correct implicit equation for percentage reduction or for $\frac{195.8-220}{220}$
2(c)	84		M2 for $\frac{63}{1-\frac{25}{100}}$ oe or M1 for associating 63 with $(100-25) \%$ or a correct implicit equation for the original price.
3(a)	662.45	2	M1 for $600 \times\left(1+\frac{2}{100}\right)^{5}$ oe
3(b)(i)	800	2	M1 for $x\left(1+\frac{5}{100}\right)^{2}=882$ oe or SC1 for answer 82
3(b)(ii)	5 nfww	2	M1 for trial with $882 \times\left(1+\frac{5}{100}\right)^{n}$ with $n>1$
4(a)(i)	955 or 955.0 to 955.2	2	M1 for $2 \times \pi \times 8 \times 19$ oe
4(a)(ii)	812 or 811.7 to 811.9...	2	FT their (i) $\times 0.85$ M1 for their (i) $\times 0.85$ or their (i) $\times 85$
4(b)(i)	$\frac{\frac{4}{3} \times \pi \times 6^{3}}{\frac{1}{3} \times \pi \times 8^{2}}$ or cancelling clearly seen to reach 13.5	M2	M1 for $\frac{4}{3} \times \pi \times 6^{3}=\frac{1}{3} \times \pi \times 8^{2} \times h$
4(b)(ii)	15.7 or 15.69...	2	M1 for $8^{2}+13.5^{2}$ or better
4(b)(iii)	394 or 395 or 394.3 to $394.6 \ldots$	1	FT $\pi \times 8 \times$ their (b)(ii)

Question	Answer	Marks	Partial Marks
4(c)	567	$\mathbf{3}$	M2 for $\frac{168}{V}=\left(\frac{80}{180}\right)^{\frac{3}{2}}$ oe or better
			or M1 for $\left(\frac{180}{80}\right)^{\frac{1}{2}}$ or $\left(\frac{80}{180}\right)^{\frac{1}{2}}$ oe seen or better
4(d)	51.3 or $51.34 \ldots$	$\mathbf{3}$	M2 for tan $=\frac{5}{4}$ oe
or M1 for recognition of angle $P B X$			

Question	Answer	Marks	Partial Marks
6(c)	13.25 nfww	6	B2 for frequencies $30,40,30$ soi or B1 for 2 of these M1 for $5,12.5,22.5$ M1 $\Sigma f x$ with their frequencies (if seen) and each x in correct interval including boundaries M1 dependent for $\frac{\Sigma f x}{100}$ (dependent on second M1) OR Alternative Method B2 for frequencies $15,15,40,10,10,10$ soi or B1 for 2 of 15, 40, 10 M1 for 2.5, 7.5, 12.5, 17.5, 22.5, 27.5 M1 $\Sigma f x$ with their frequencies (if seen) and each x in correct interval including boundaries M1 dependent for $\frac{\Sigma f x}{100}$ (dependent on second M1)
7(a)	9	3	M2 for $0.42 x+0.42=4.2$ oe or better or M1 for $0.21 x+0.21(x+2)$ oe $[=420$ or 4.20] or for $21 x+21(x+2)$ oe [$=420$ or 4.20] or for $420 \div 21$ oe $[=20]$
7(b)	$5 r+p=245$	B1	
	$2 r+3 p=215$	B1	
	45	3	Finds p M1 for correctly equating coefficients of r M1 for correct method to eliminate r OR M1 for correctly making r the subject of one of their equations M1 for correctly substituting their correct r to form an equation in p OR Finds r first M1 for correctly eliminating p from their equations M1 for correctly substituting their value of r to find p

Question	Answer	Marks	Partial Marks
7(c)(i)	$\frac{12}{x}+\frac{6}{x-1}[=5]$	M1	
	$12(x-1)+6 x=5 x(x-1)$	M1	Dependent on previous M1 earned May be over common denominator
	$5 x^{2}-23 x+12=0$ reached, with at least one more line of working and with no errors or omissions	A1	
7(c)(ii)	$(5 x-3)(x-4)$ final answer	2	B1 for $(5 x+a)(x+b)$ with $a b=12$ or $a+5 b=-23$ or for $5 x(x-4)-3(x-4)$ or $x(5 x-3)-4(5 x-3)$
7(c)(iii)	$\frac{3}{5} \text { oe and } 4$	D	FT from their two brackets in (c)(ii)
7(c)(iv)	3 cao	1	
8(a)(i)	$\frac{4}{5} \text { oe }$	1	
8(a)(ii)	$\frac{4}{5} \text { oe }$	1	
8(b)(i)	$\frac{6}{20} \text { oe nfww }$	3	M2 for $\frac{1}{5} \times \frac{3}{4}+\frac{3}{5} \times \frac{1}{4}$ oe or $2 \times \frac{1}{5} \times \frac{3}{4}$ oe or M1 for $\frac{1}{5} \times \frac{3}{4}$ alone or $\frac{3}{5} \times \frac{1}{4}$ alone or for answer $\frac{3}{20}$ nfww After 0 scored, SC1 for answer $\frac{6}{25}$
8(b)(ii)	$\frac{8}{20}$ oe nfww	3	M2 for $1-\frac{4}{5} \times \frac{3}{4}$ or $\frac{1}{5} \times 1+\frac{4}{5} \times \frac{1}{4}$ oe or $2 \times \frac{1}{5} \times 1$ or $2 \times \frac{1}{5} \times \frac{3}{4}+2 \times \frac{1}{5} \times \frac{1}{4}$ or their (b)(i) $+2 \times \frac{1}{5} \times \frac{1}{4}$ or M1 for answer $\frac{2 \text { or } 4 \text { or } 5 \text { or } 6 \text { or } 7}{20}$ oe nfww After 0 scored, SC1 for answer $\frac{8}{25}$

9(a)	$\begin{aligned} & x+y \geqslant 6 \mathrm{oe} \\ & y \leqslant x \mathrm{oe} \\ & x \leqslant 8 \end{aligned}$	3	B1 for each
9(b)	$4 x+6 y \leqslant 60$	1	
9(c)	Correct region indicated cao	6	B1 for $x+y=6$ ruled and long enough B1 for $x=y$ ruled and long enough B1 for $x=8$ ruled and long enough B2 for $2 x+3 y=30$ ruled and long enough or $\mathbf{B} 1$ for ruled line through $(0,10)$ or $(15,0)$ but not $y=10$ or $x=15$
9(d)(i)	6, 6	1	
9(d)(ii)	34	2	M1 for trying $4 x+6 y$ with $(4,3)$ or $(5,2)$ or $(6,1)$ or $(7,0)$
10(a)	$\begin{aligned} & -7 \\ & 13-4 n \mathrm{oe} \\ & 36 \\ & (n+1)^{2} \mathrm{oe} \\ & 125 \\ & n^{3} \mathrm{oe} \\ & 128 \\ & 2^{n+2} \mathrm{oe} \end{aligned}$	11	B1 B2 or $\mathbf{B} 1$ for $13-k n(k \neq 0)$ or for $k-4 n$ B1 B2 or B1 for any quadratic B1 B1 B1 B2 or B1 for 2^{k} oe
10(b)	$\begin{aligned} & \ldots ., \ldots . ., 6,10,16 \\ & \ldots . ., 3,4,7, \ldots . \\ & 2, \ldots ., 1,0, \ldots \end{aligned}$	3	B1 for each correct row
10(c)(i)	$\frac{q}{p+q}$	1	
10(c)(ii)	$\frac{18}{29}$	1	

MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	$5: 6$	1	
1(a)(ii)	$2.0736[0] \times 10^{5}$ final answer	3	B2 for 207360 oe or M1 for $16 \times 18 \times 720$
1(b)(i)	26780	2	M1 for $18540 \div 9$ soi
1(b)(ii)	1.36	2	M1 for 0.85×1.6 oe or B1 for 0.51 or 51
1(c)	66.7 or 66.66 to 66.67	5	M4 for $\frac{(2.3-1.5 \times 0.92)}{1.5 \times 0.92}[\times 100]$ oe or $\frac{2.3 \times 100}{1.5 \times 0.92}$ oe OR Working in euros B2 for [$€] 1.38$ or M1 for $1.5[0] \times 0.92$ M2dep on B2 or M1 for $\frac{2.3-\text { their } 1.38}{\text { their } 1.38}[\times 100]$ oe or $\frac{2.3-\text { their } 1.38}{\text { their } 1.38} \times 100$ oe or M1 for 2.3 - their 1.38 or $\frac{2.3}{\text { their } 1.38}$ OR Working in dollars B2 for [\$]2.50 or M1 for or $2.3[0] \div 0.92$ M2dep on B2 or M1 for $\frac{\text { their } 2.5-1.5}{1.5}[\times 100]$ oe or $\frac{\text { their } 2.5}{1.5} \times 100$ or M1 for their $2.5-1.5$ or $\frac{\text { their } 2.5}{1.5}$

Question	Answer	Marks	Partial Marks
1(d)	219000 or 218814 [.3....] rounded to 4 sf or more	3	B2 for 414000 or $414414[.3 \ldots$. $]$ rounded to 4 sf or more or M2 for $195600 \times\left(1+\frac{8.7}{100}\right)^{9}[-195600]$ or M1 for $195600 \times\left(1+\frac{8.7}{100}\right)^{k}$ or better ($k>1$ and an integer)
2(a)(i)	54	1	
2(a)(ii)	29	2	M1 for [UQ =] 65 or [LQ =] 36
2(a)(iii)	32	1	
2(a)(iv)	17, 18 or 19	2	M1 for 61 to 63 written or for decimal answer in range 17 to 19
2(b)(i)	18, 26, 26	2	B1 for 1 or 2 correct
2(b)(ii)	51 nfww	4	M1 for $10,30,50,70,90$ soi M1 for $\Sigma f x$ M1 dep for their $\sum f x \div \sum f$
2(c)(i)	75	1	
2(c)(ii)	IQR is bigger for the girls with [boys =] 20 seen oe	2	FT their IQR from (a)(ii) M1 for IQR for boys $=20$ isw or for girls IQR is bigger than boys IQR oe isw FT their IQR from (a)(iii)
3(a)(i)	$(3,5.5)$	2	B1 for either value correct
3(a)(ii)	$\frac{5}{4} x+\frac{7}{4}$ final answer	3	B2 for answer $\frac{5}{4} x+c$ oe or for correct equation in different form or M1 for $\frac{8-3}{5-1}$ oe and M1 for correct substitution shown of (1, $3)$ or $(5,8)$ or their (a)(i) into $y=($ their $m) x+c$ oe
3(b)(i)	$\begin{aligned} & (6,1) \\ & (10,6) \end{aligned}$	2	B1 for 2 or 3 values correct
3(b)(ii)	$\begin{aligned} & (-3,1) \\ & (-8,5) \end{aligned}$	2	B1 for 2 or 3 values correct If 0 scored, SC1 for $(3,-1)$ and $(8,-5)$
3(b)(iii)	$\begin{aligned} & (3,3) \\ & (-1,8) \end{aligned}$	2	B1 for 2 or 3 values correct but not for $(1,3)$ and $(5,8)$

Question	Answer	Marks	Partial Marks
3(b)(iv)	$\begin{aligned} & (5,-3) \\ & (11,-8) \end{aligned}$	2	B1 for either or M1 for $\left(\begin{array}{rr}-1 & 2 \\ 0 & -1\end{array}\right)\binom{1}{3}$ or $\left(\begin{array}{rr}-1 & 2 \\ 0 & -1\end{array}\right)\binom{5}{8}$
3(c)	$\begin{aligned} & \text { Enlargement } \\ & -2 \\ & \text { Origin oe } \end{aligned}$	3	B1 for each
4(a)	452 or 452.2 to 452.4...	2	M1 for $\left[\frac{1}{2} \times\right] \frac{4}{3} \times \pi \times 6^{3}$
	cm^{3}	1	
4(b)(i)(a)	400 or 399.6 to 399.9	6	B3 for $[C D=] \sqrt{72.96}$ or [angle $C B D=$] 58.7 or 58.66 to 58.67 or M2 for $\sqrt{10^{2}-5.2^{2}}$ oe or $[C B D=] \cos ^{-1}\left(\frac{5.2}{10}\right)$ oe or M1 for $(C D)^{2}+5.2^{2}=10^{2}$ oe or $\cos [C B D]=\frac{5.2}{10}$ oe or $\sin [C D B]=\frac{5.2}{10}$ oe M1dep for $\frac{5.2 \times \text { their } C D}{2}$ oe or $\frac{1}{2} \times 5.2 \times 10 \times \sin ($ their $C B D)$ oe M1 for their area $\times 18$ oe
4(b)(i)(b)	14.6 or 14.62 to 14.63.	4	M3 for $\sin B E C=\frac{5.2}{\sqrt{10^{2}+18^{2}}}$ oe or $\mathbf{M 2}$ for $[B E=] \sqrt{10^{2}+18^{2}}$ oe seen or $[E C=] \sqrt{18^{2}+10^{2}-5.2^{2}}$ oe seen or M1 for $\left[B E^{2}=\right] 10^{2}+18^{2}$ oe seen or $\left[E C^{2}=\right] 18^{2}+10^{2}-5.2^{2}$ seen
4(b)(ii)	125 or 124.9 to $125.0 \ldots$	3	B2 for $55[.0 \ldots]$ seen or M2 for $180-\tan ^{-1}\left(\frac{10}{7}\right)$ oe or $\cos E G B=\frac{11^{2}+\left(10^{2}+7^{2}\right)-\left(10^{2}+18\right)^{2}}{2 \times 11 \times \sqrt{10^{2}+7^{2}}}$ oe or M1 for $\tan [\quad]=\left(\frac{10}{7}\right)$ oe or for $\left(10^{2}+18^{2}\right)=11^{2}+\left(10^{2}+7^{2}\right)-2 \times 11 \times$ $\sqrt{10^{2}+7^{2}} \cos E G B$ oe

Question	Answer	Marks	Partial Marks
5(a)	3.5, 15, 3.9	3	B1 for each
5(b)	Correct graph	5	B4 for correct curves but branches joined or touching y-axis or B3FT 10 or 11 points or B2FT for 8 or 9 points or B1FT for 6 or 7 points B1indep two separate branches not touching or crossing y-axis
5(c)	0.5 to 0.6 and 1.3 to 1.6	2	B1 for each or both correct but in reverse order
5(d)	1	1	
5(e)(i)	$y=3 x+1 \text { ruled }$ $\text { and } 0.3 \text { to } 0.49$	3	B2 for correct ruled line that crosses their curve or B1 for $y=3 x+1$ soi or freehand line or ruled line with gradient 3 or with y - intercept at 1 (but not $y=1$)
5(e)(ii)	$\begin{aligned} & {[a=]-6} \\ & {[b=]-2} \\ & {[c=]-4} \end{aligned}$	3	M2 for $x^{4}+2-4 x=6 x^{3}+2 x^{2}$ or better seen or B1 for each correct value to a maximum of 2 marks If 0 scored, $\mathbf{S C 1}$ for answer $[a=] 6,[b=] 2$ and $[c=] 4$ or for $x^{5}+2 x-4 x^{2}=6 x^{4}+2 x^{3}$ or better
6(a)(i)	13.9[0...] from cosine rule	4	M2 for $8^{2}+13^{2}-2 \times 8 \times 13 \cos 79$ or M1 for $\cos 79=\frac{13^{2}+8^{2}-B C^{2}}{2 \times 8 \times 13}$ A1 for 193
6(a)(ii)	66.6 or $66.60 \ldots$ to 66.65 from sine rule	3	M2 for $[\sin A C B=] \frac{13 \times \sin 79}{\text { their }(a)(i)}$ or M1 for $\frac{\sin A C B}{13}=\frac{\sin 79}{\operatorname{their}(a)(i)}$ oe
6(b)(i)	$\frac{1}{2}(x+4)(4 x-5) \sin 30=70$	M1	
	$4 x^{2}+16 x-5 x-20=280$	M2	Dep on M1 B1 for $4 x^{2}+16 x-5 x-20$ or better
	Leading to $4 x^{2}+11 x-300=0$	A1	with no errors or omissions seen

Question	Answer	Marks	Partial Marks
6(b)(ii)	$\frac{-11 \pm \sqrt{11^{2}-4 \times 4 \times-300}}{2 \times 4}$	B2	B1 for $\sqrt{11^{2}-4(4)(-300)}$ or better or for $\frac{-11+\sqrt{q}}{2 \times 4}$ or $\frac{-11-\sqrt{q}}{2 \times 4}$
	-10.14 and 7.39	B2	B1 for each or SC1 for final answers -10.1 or -10.144 to -10.143 and 7.4 or 7.393 to 7.394 or -10.14 and 7.39 seen in working or for -7.39 and 10.14 as final answer
6(b)(iii)	11.4 or 11.39...	1	FT their positive root +4
7(a)(i)	13	1	
7(a)(ii)	3	2	M1 for $\mathrm{h}\left(\frac{10}{30}\right)$ oe soi or $27^{\frac{10}{x}}$
7(a)(iii)	$\frac{7-x}{2}$ oe final answer	2	M1 for $x=7-2 y$ or $y-7=-2 x$ or $7-y=2 x$ or $-\frac{y}{2}=-\frac{7}{2}+x$ oe
7(b)	0.75 oe final answer	3	M1 for $\frac{10}{2 x+1}=4$ M1 for $10=8 x+4$ or better
7(c)	$\frac{70-19 x}{x(7-2 x)}$ or $\frac{70-19 x}{7 x-2 x^{2}}$ final answer	3	M1 for $x+10(7-2 x)$ or better isw B1 for common denominator $x(7-2 x)$ oe isw
7(d)	3 final answer	1	
8(a)(i)	$\frac{m-7}{5}$ oe final answer	2	M1 for $5 p=m-7$ or $p+\frac{7}{5}=\frac{m}{5}$
8(a)(ii)	$[\pm] \sqrt{\frac{y^{2}-h}{2}}$ or $[\pm] \sqrt{\frac{h-y^{2}}{-2}}$ oe final answer	3	M1 for first correct step isolate term in p or divide by ± 2 M1 for second correct step FT their first step
8(b)(i)	$\binom{0}{5}$	1	
8(b)(ii)	$\binom{-3}{-1}$	1	

Question	Answer	Marks	Partial Marks
8(b)(iii)	3.22 or 3.216... to 3.220...	6	$\mathbf{B 3}$ for [angle $A O B=$] 36.8 or 36.9 or 36.84 to 36.87 or M2 for $\tan [A O B]=\frac{3}{4}$ oe or for $[A O B=] 2 \times \sin ^{-1}$ $\left(\frac{\sqrt{(5-4)^{2}+(0--3)^{2}}}{10}\right) \mathrm{oe}$ or for $\cos [A O B=]$ $\frac{5^{2}+5^{2}-\left(\sqrt{(5-4)^{2}+(0--3)^{2}}\right)^{2}}{2 \times 5 \times 5} \mathrm{oe}$ or M1 for recognition of right-angle with perpendicular from B to $O A$ or x-axis or for $\left[A B^{2}=\right](5-4)^{2}+(0--3)^{2}$ or better oe or $(\text { their } A B)^{2}=5^{2}+5^{2}-2 \times 5 \times 5 \times \cos O A B$ oe M2 for $\frac{\text { their angle } A O B}{360} \times 2 \times \pi \times 5$ oe or M1 for radius $=5$ soi
9(a)	171 or 171.0...	3	M2 for $\frac{7.6}{160} \times 60 \times 60$ oe or M1 for $\frac{7.6}{160}$ or $\frac{7.6}{2 \frac{2}{3}}$ or $\frac{7.6}{2 \min 40 \sec }$ If 0 scored, $\mathbf{S C 1}$ for answer 189 or 188.6 to 188.7
9(b)(i)	77 [min] 20 [s]	4	M3 for $\frac{32}{12} \times 29$ oe or B2 for 4640 or 1.29 or 1.288 to $1.289, \frac{58}{45}$ oe or 32 laps or 29 laps or M2 for $2^{5} \times 5 \times 29$ oe or M1 for $2 \mathrm{~m} 40 \mathrm{sec} \div(2 \mathrm{~m} 40 \mathrm{sec}-2 \mathrm{~m} 25 \mathrm{sec})$ soi for $2 \mathrm{~m} 25 \mathrm{sec} \div(2 \mathrm{~m} 40 \mathrm{sec}-2 \mathrm{~m} 25 \mathrm{sec})$ soi or for an attempt to find LCM or 23200 seen or correctly find prime factors of 145 or 160 or for $\frac{7.6}{145}$ or $\frac{7.6}{2 \frac{5}{12}}$ or $\frac{7.6}{2 \min 25 \mathrm{sec}}$ oe, provided SC1 not earned in part (a)
9(b)(ii)	220.4	2	M1 for their $(\mathrm{b})(\mathrm{i}) \div 2 \min 40 \sec [\times 7.6]$ oe or their (a) \times their $(\mathrm{b})(\mathrm{i}) \div 60$ oe

MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	1254	2	M1 for $342 \div 3$
1(a)(ii)	27.3 or $27.27 .$.	1	
1(b)	867	2	M1 for $1020 \times \frac{15}{100}$ oe or $1020 \times\left(1-\frac{15}{100}\right)$ oe
1(c)	4.5[0]	3	M2 for $\frac{79.5[0]}{100+6}[\times 6]$ oe or $\frac{79.5[0]}{100+6} \times 100$ oe or M1 for $79.5[0]$ associated with $106[\%]$
1(d)	22.6 or $22.58 \ldots \mathrm{nfww}$	4	M1 for $\frac{45}{20}$ or better and M2 for $\frac{60+45}{\text { their } 2 \mathrm{~h} 24 \mathrm{~min}+\text { their } \frac{45}{20}}$ or M1 for their $\frac{45}{20}+$ their 2 h 24 min
1(e)	$91.6[0]$ to 91.61	3	M2 for $480 \times\left(1+\frac{2.1}{100}\right)^{4}-430$ oe OR M1 for $480 \times\left(1+\frac{2.1}{100}\right)^{4}$ oe A1 for 522, $521.6[0]$ to 521.61
1(f)	112.8125	2	B1 for 2.5 or 9.5 seen

Question	Answer	Marks	Partial Marks
2(a)(i)	$2 a+a+2 b+3 b+10=180$ leading to $3 a+5 b=170$ without error or omission	1	
2(a)(ii)	$8 a+3 a+2 b+b+50+4 b-2 a=360$ leading to $9 a+7 b=310$ without error or omission	1	
2(a)(iii)	Correct method to eliminate one variable	M1	
	$\begin{aligned} & {[a=] 15} \\ & {[b=] 25} \end{aligned}$	A2	A1 for each correct value If 0 scored, $\mathbf{S C 1}$ for two values that satisfy one of the equations or for two correct answers with no/incorrect working
2(a)(iv)	30	1	
2(b)	$-1.5 \text { or }-1 \frac{1}{2} \text { or }-\frac{3}{2}$	2	M1 for $6 x=-12+3$ or better
2(c)	$\frac{3 x+3}{2}$ oe final answer	3	M1 for $8 x-2 y=5 x-3$ or $4 x-y=\frac{1}{2}(5 x-3)$ M1FT for isolating the y term correctly
2(d)	$9 x^{6}$	2	M1 for $\left(3 x^{3}\right)^{2}$ or $\left(729 x^{18}\right)^{\frac{1}{3}}$ seen or for $9 x^{k}$ or $k x^{6}$ as final answer
2(e)	$\frac{x}{x-5}$ final answer nfww	3	$\begin{aligned} & \text { M1 for } x(x+5) \\ & \text { M1 for }(x-5)(x+5) \end{aligned}$
3(a)	5, -3, 21	3	B1 for each
3(b)	Fully correct curve	4	B3 FT for 9 or 10 points or B2 FT for 7 or 8 points or B1 FT for 5 or 6 points
3(c)	$\begin{aligned} & -2.9 \text { to }-2.7 \\ & 0 \\ & 1.7 \text { to } 1.9 \end{aligned}$	2	B1 for 2 correct values

Question	Answer	Marks	Partial Marks
3(d)	Tangent ruled at $x=2$	B1	
	10 to 14	B2	$\begin{array}{l}\text { Dep on correct tangent or close attempt at } \\ \text { tangent at } x=2\end{array}$
M1 for rise/run also dep on correct			
tangent drawn or close attempt at tangent			
Must see correct or implied calculation			
from a drawn tangent			

Question	Answer	Marks	Partial Marks
5(d)(ii)	48.75 nfww	4	M1 for midpoints soi M1 for use of $\sum f x$ with their frequencies M1 (dep on 2nd M1) for $\sum f x \div(60$ or by their $\Sigma f)$
6(a)(i)	Angle $A B C=52$ nfww	B1	ALTERNATIVE [Reflex] angle $A O C=256$
	Opposite angles in cyclic quad oe Angles in opposite segments	B1	Angle at centre $=2 \times$ angle at circumference/arc
	[Angle $A O C=104]$ Angle at centre $=2 \times$ angle at circumference/arc nfww	B1	Angles around a point
6(a)(ii)	22 nfww	2	B1 for angle $O A C=38$ or angle $C A D=24$
6(a)(iii)	28	1	
6(a)(iv)	36.6 or 36.62 to 36.63 nfww	3	B2 for 7.4 or 17.42 to 17.43 or M2 for $9.6 \times 2+\frac{104}{360} \times 2 \times \pi \times 9.6$ or M1 for $\frac{104}{360} \times 2 \times \pi \times 9.6$
6(b)(i)	81	3	M2 for $\frac{A}{36}=\left(\sqrt[3]{\frac{2187}{648}}\right)$ oe or better or for $A \times \frac{648}{36} \times \sqrt[3]{\frac{2187}{648}}=2187 \mathrm{oe}$ or better or M1 for $\frac{A^{3}}{36^{3}}=\frac{2187^{2}}{648^{2}}$ oe or $\sqrt[3]{\frac{2187}{648}}$ or $\sqrt[3]{\frac{648}{2187}}$
6(b)(ii)	8.05 or 8.051 to 8.052...	3	M2 for $\left[r^{3}=\right] \frac{2187 \times 3}{4 \times \pi}$ oe or M1 for $\frac{4 \pi r^{3}}{3}=2187$ $\mathbf{S C 2}$ for $\frac{648 \times 3}{4 \times \pi}$ or $\mathbf{S C} \mathbf{1}$ for $\frac{4 \pi r^{3}}{3}=648$
7(a)	Reflection $y=-1$	2	B1 for each
7(b)(i)	$\begin{array}{\|l} \text { Image at } \\ (-6,5)(-6,7)(-5,7)(-4,5) \end{array}$	2	B1 for translation by $\binom{-3}{k}$ or $\binom{k}{4}$

Question	Answer	Marks	Partial Marks
7(b)(ii)	Image at $(1,-1)(3,-1)(3,-3)(2,-3)$	2	B1 for shape correct size and orientation but wrong position
7(b)(iii)	$\begin{aligned} & \text { Image at } \\ & (1,2)(1,6)(3,6)(5,2) \end{aligned}$	2	B1 for shape correct size and orientation, wrong position
8(a)(i)	$\frac{2}{5} \text { oe }$	2	$\text { M1 for } \frac{4}{6} \times \frac{3}{5}$
8(a)(ii)	$\frac{3}{5} \text { oe }$	1	FT 1 - their $\frac{12}{30}$ oe
8(b)	$\frac{5}{7} \text { oe nfww }$		M3 for $\frac{2}{7}+\frac{5}{7} \times \frac{2}{6}+\frac{5}{7} \times \frac{4}{6} \times \frac{2}{5}$ oe or for $1-\frac{5}{7} \times \frac{4}{6} \times \frac{3}{5}$ oe or M1 for each of $\frac{5}{7} \times \frac{2}{6}$ and $\frac{5}{7} \times \frac{4}{6} \times \frac{2}{5}$ oe or completed tree diagram with appropriate probabilities shown
9(a)(i)	5	1	
9(a)(ii)	1	2	M1 for $\mathrm{h}(0)$ or $3^{9-x^{2}}$ or better
9(a)(iii)	$9-4 x^{2}$ final answer	1	
9(a)(iv)	$15-2 x^{2}$ final answer	2	M1 for $2\left(9-x^{2}\right)-3$ or better
9(b)	$\frac{x+3}{2}$ final answer	2	M1 for $x=2 y-3$ or $y+3=2 x$ or better or $\frac{y}{2}=x-\frac{3}{2}$
9(c)	$1.8 \text { or } 1 \frac{4}{5} \text { or } \frac{9}{5}$	2	M1 for $10 x-15=3$ or $2 x-3=\frac{3}{5}$
9(d)	-1 and 4 nfww	4	M1 for $9-(2 x-3)^{2}=-16$ A1 for $4 x^{2}-12 x-16[=0]$ oe M1 (dep on first M1) for correct factors or use of formula or completing the square for their 3-term quadratic OR M1 for $9-y^{2}=-16$ A1 for $y^{2}=25$ M1 (dep on first M1) for $2 x-3= \pm 5$
9(e)	$\frac{1}{9}$	1	

Question	Answer	Marks	Partial Marks
10	$x+1-2 x=3 x(x+1)$	M2	M1 for a common denominator of $x(x+1)$ seen or attempt to multiply through by denominators or for $\frac{x+1-2 x}{x(x+1)}=3$
	$3 x^{2}+4 x-1[=0]$ oe nfww	A1	
	$[x=] \frac{-4 \pm \sqrt{4^{2}-4 \times 3 \times(-1)}}{2 \times 3}$	B2	B1FT for $\sqrt{4^{2}-4 \times 3 \times(-1)}$ or better or for $\left(x+\frac{2}{3}\right)^{2}$ B1FT for $\frac{-4+\sqrt{q}}{2 \times 3}$ or $\frac{-4-\sqrt{q}}{2 \times 3}$ or for $-\frac{2}{3} \pm \sqrt{\frac{1}{3}+\left(\frac{2}{3}\right)^{2}}$
	-1.55 and 0.22 final answers	B2	B1 for each or B1 for -1.548 to -1.549 and $0.215 \ldots$ or for -1.55 and 0.22 seen in working or for -0.22 and 1.55 as final answer or for -1.5 or -1.54 and 0.2 or 0.21 as final answer
11(a)(i)	$8 \mathbf{b}-4 \mathbf{a}$ oe	1	
11(a)(ii)	6b	1	
11(a)(iii)	$6 \mathbf{b}-2 \mathbf{a}$ or $2(3 \mathbf{b}-\mathbf{a})$	1	FT-2a + their (a)(ii)
11(b)	2:1 oe final answer	3	Dep on correct $\overrightarrow{B C}$ or correct $\overrightarrow{A C}$ seen B2 for $\overrightarrow{B C}=4 \mathbf{b}-2 \mathbf{a}$ or M1 for a correct route for $\overrightarrow{B C}$ in terms of \mathbf{a} and \mathbf{b} or for a correct route for $\overrightarrow{A C}$ in terms of a and \mathbf{b} If no/incorrect working seen then $\mathbf{S C 1}$ for final answer of 2:1 (oe)

MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	Image at (1, 7), (4, 7), (4, 9), (3, 9)	2	B1 for translation by $\binom{-1}{k}$ or $\binom{k}{6}$
1(a)(ii)	Image at (5, 3), (6, 3), (8, 5), (5, 5)	2	B1 for 180° rotation with wrong centre
1(a)(iii)	Rotation 180° $(4.5,6)$ OR Enlargement, [factor] - 1 $(4.5,6)$	3	B1 for rotation B1 for 180° B1FT for centre from their (a)(i) B1 for enlargement B1 for -1 B1FT for centre from their (a)(i)
1(b)(i)	Image at (1, 2), (1, 5), (3, 5), (3, 4)	2	B1 for $y=x$ drawn or for 3 correct points
1(b)(ii)	$\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	2	B1 for one correct row or one column within a 2 by 2 matrix
2(a)	2, 2, 6	3	B1 for each
2(b)	Correct graph	4	B3FT for 10 or 11 correct plots or B2FT for 8 or 9 correct plots or B1FT for 6 or 7 correct plots
2(c)	-3.3 to -3.1	1	FT their graph
2(d)	$y=-2 x$ ruled	M1	or B1 for $y=-2 x$ stated
	-2.6 to -2.45	A1	
2(e)	3 or 4 or 5	1	FT their graph Allow more than one correct value

Question	Answer	Marks	Partial Marks
3(a)	530	4	B3 for $[D E]=130 \mathrm{~m}$ and $[D C]=80 \mathrm{~m}$ or $\mathbf{B 2}$ for $[D E]=130 \mathrm{~m}$ or $[D C]=80 \mathrm{~m}$ or M1 for $50^{2}+120^{2}$ or $170^{2}-150^{2}$
3(b)	52.9 or $52.89 \ldots$	4	M2 for $\frac{100^{2}+150^{2}-120^{2}}{2 \times 100 \times 150}$ or M1 for $120^{2}=100^{2}+150^{2}-2 \times 100 \times 150 \cos (\ldots)$ A1 for 0.603 or $0.6033 \ldots$ or $\frac{181}{300}$
3(c)(i)	28.1 or $28.07 \ldots$	2	M1 for $\cos =\frac{15}{17}$ oe
3(c)(ii)	331.9 or 331.9...	2	FT 360 - their (c)(i) M1 for 360 - their (c)(i) oe
3(d)	$1.5[0]$ or $1.498 \ldots$ nfww		M1 for $\frac{1}{2} \times 50 \times 120$ oe M1 for $\frac{1}{2} \times 100 \times 150 \sin ($ their $(\mathbf{b}))$ oe M1 for $\frac{1}{2} \times 150 \times$ their $C D$ oe or $\frac{1}{2} \times 150 \times 170 \times \sin$ their $(\mathbf{c})(\mathbf{i})$ If 0 scored, $\mathbf{S C 1}$ for dividing their area by 10000
4(a)(i)	range $=7$	1	
	mode $=21$	1	
	median $=22.5$	2	M1 for evidence of middle value
	mean $=22.7$ or $22.71 \ldots$	2	M1 for use of $\Sigma x \div 14$
4(a)(ii)	$\frac{3}{14} \mathrm{oe}$	1	
4(b)	$x-n+1$ final answer	3	M2 for $n x-(n-1)(x+1)$ or M1 for $(n-1)(x+1)$
4(c)(i)	16.6 or 16.60 to 16.61 nfww	4	M1 for $5,12.5,17.5,22.5,30$ soi M1 for $\Sigma f x$ where x is in correct interval, including boundaries M1 dep on second M1 for $\frac{\Sigma f x}{50+85+100+120+10}$

Question	Answer	Marks	Partial Marks
4(c)(ii)	Correct histogram	4	B1 for each correct block If 0 scored, SC1 for 5, 20, 24, 1 seen
5(a)	4.73 or 4.730 to 4.731...	3	M2 for $3 \times 1.2+\pi \times 0.6^{2}$ oe or M1 for $\pi \times 0.6^{2}$ or $\frac{1}{2} \times \pi \times 0.6^{2}$ or 3×1.2
5(b)	946 or 946.0 to $946.2 . .$.	3	M2 for their (a) $\times 0.2 \times 1000$ oe or M1 for their (a) $\times 0.2$ or 20 implied by figs $946[0]$ to 9462
5(c)	1.28 or 1.29 or 1.284 to 1.290	3	M2 for $\frac{(1007-\operatorname{their}(\mathbf{b})) \div 1000}{\text { their } \mathbf{(a)}} \times 100$ oe or for $\frac{1007-\text { their }(\mathbf{b})}{\text { their }(\mathbf{b})} \times 20$ oe or M1 for figs $\frac{1007-\text { their }(\mathbf{b})}{\text { their }(\mathbf{a})}$ or figs $\frac{1007}{\text { their }(\mathbf{a})}$ or for $\frac{1007-\text { their }(\mathbf{b})}{\text { their }(\mathbf{b})}$ or $\frac{1007}{\text { their }(\mathbf{b})} \times 20$ oe
6(a)		2	B1 for any one correct
6(b)	110	1	FT their 110 in Venn diagram
6(c)	$\frac{10}{240} \text { oe }$	1	$\text { FT } \frac{\text { their } 10}{240}$

Question	Answer	Marks	Partial Marks
6(d)	$\frac{870}{1560} \text { oe }$	3	M2 for $\frac{\text { their } 30}{40} \times \frac{\text { their } 30-1}{39}$ or M1 for $\frac{p}{q} \times \frac{p-1}{q-1} p<q$ or for $\frac{\text { their } 30}{40}$ soi
7(a)(i)	1.991×10^{3}	4	B3 for 1991 or 1.99×10^{3} or $1.991 \ldots \times 10^{3}$ or $\mathbf{B 2}$ for 1990 or 1991. ... OR M1 for $104.3 \times 26.5+\frac{1}{2} \times(-2.2) \times 26.5^{2}$ oe B1 for their seen value correctly rounded to 4 sf B1 for their seen value correctly converted into standard form
7(a)(ii)	$\frac{2(s-u t)}{t^{2}}$ oe final answer	3	M1 for correct multiplication by 2 oe M1 for correct rearrangement to isolate term with a M1 for correct division by t^{2} for 3 marks e.g. cannot have a fraction in denominator nor $\div t^{2}$ in numerator
7(b)(i)	$(2 x+3)(x-1)-(x+1)(x-2)=62$	M1	
	$\begin{aligned} & 2 x^{2}+3 x-2 x-3 \text { oe } \\ & \text { or } x^{2}+x-2 x-2 \text { oe } \end{aligned}$	B1	
	$x^{2}+2 x-63=0$	A1	Established with no errors or omissions
7(b)(ii)	$(x+9)(x-7)$	2	B1 for $(x+a)(x+b)$ where $a b=-63$ or $a+b=2$ or for $x(x-7)+9(x-7)$ or for $x(x+9)-7(x+9)$
7(b)(iii)	20	2	FT $2 \times$ their positive root +6 M1 for substituting their positive root into four lengths or for stating $2 x+6$

Question	Answer	Marks	Partial Marks
8(a)	6 nfww	3	M2 for $\frac{2.65-2.50}{2.50}[\times 100]$ or for $\frac{2.65}{2.50} \times 100$ or M1 for $\frac{2.65}{2.50}$
8(b)	552.5[0]	3	B2 for $52.5[0]$ or M2 for $500 \times \frac{1.5}{100} \times 7+500$ oe or M1 for $500 \times \frac{1.5}{100}[\times 7]$ oe
8(c)	37.4 or 37.36...	2	M1 for $\left(1+\frac{1.6}{100}\right)^{20}$ oe soi $1.37 \ldots$
8(d)	4[.00...]	3	M2 for $\sqrt[22]{\frac{2607}{6400}}$ or M1 for $6400 \times x^{22}=2607$ oe or better
9(a)	82	2	M1 for $\left(3^{x}\right)^{2}+1$ soi by $\left(3^{2}\right)^{2}+1$ or $g(9)$ isw
9 (b)	$\frac{x+2}{7}$ final answer	2	M1 for $y+2=7 x$ or $\frac{y}{7}=x-\frac{2}{7}$ or $x=7 y-2$
9(c)	$[a=] 1,[b=] 2,[c=] 2$	3	B2 for $x^{4}+x^{2}+x^{2}+1+1$ or M1 for $\left(x^{2}+1\right)^{2}+1$
9(d)	$\frac{6}{7} \mathrm{oe}$	3	M2 for $7 x-2=4$ or M1 for $3^{x}=81$ soi $\mathrm{f}(x)=4$ or for $3^{7 x-2}=81$ or better
10(a)	10	1	
10(b)	$6.2[0]$ or 6.203 to 6.204	3	M2 for $\left[x^{3}=\right] 1000 \div \frac{4}{3} \pi$ oe or better or M1 for $\frac{4}{3} \pi x^{3}=1000$
10(c)	7.82 or 7.815 to 7.816	4	B3 for $\left[x^{3}=\right] 1000 \div \frac{1}{3} \pi \div 2$ oe or better or M1 for $(x \sqrt{5})^{2}-x^{2}$ soi by $4 x^{2}$ or $2 x$ M1dep for $\frac{1}{3} \pi \times x^{2} \times$ theirh $[=1000$]

Question	Answer	Marks	Partial Marks
10(d)	$6 \frac{2}{3}$ or 6.67 or 6.666 to 6.667	4	B3 for $\left[x^{3}=\right] 1000 \div \frac{27}{8}$ oe or $\frac{3 x}{2}=10$ or better or M2 for $\frac{1}{2} \times x \times \frac{x}{2} \times \frac{27 x}{2}=1000$ oe or M1 for $\frac{1}{2} \times x \times \frac{x}{2}$ If 0 scored, SC2 for answer 5.29 or 5.291..
11	[Total time $=$] 16 h 6 min or 16.1 h	2	B1 for 22 h 6 min or 22.1 h or 966 mins If 0 scored, SC1 for 9 h 41 min
	[Distance to airport in New York =] 16.5	2	M1 for 18×55
	$\begin{aligned} & \text { [Arc length }=\text {] } \\ & 6200 \text { or } 6199 \text { to } 6200 \ldots \end{aligned}$	3	M2 for $\frac{55.5}{360} \times 2 \times \pi \times 6400$ or M1 for $\frac{55.5}{360}$ or $2 \times \pi \times 2400$
	[Distance Geneva to Chamonix =] 104	2	M1 for 65×1.6 or 65×96 oe
	392 to 393	2	M1 for $\frac{6316 \text { to } 6322.4}{\text { their } 16.1}$ Must be correct value in numerator

MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	16.5 or 16.49...	3	M2 for $\frac{1.13-0.97}{0.97}[\times 100]$ oe or $\frac{1.13}{0.97} \times 100$ oe or M1 for $\frac{1.13}{0.97}$ oe
1(b)(i)	35	2	M1 for $60 \div(5+7)$
1(b)(ii)	140	1	
1(c)	\$1.26 final answer	3	B2 for $1.259 \ldots$ or 1.26 but not as final answer or M1 for $2.25 \div 0.9416$ If 0 scored, $\mathbf{S C 1}$ for 1.13×0.9416
1(d)	15[.0...]	3	M2 for $\sqrt[22]{\frac{58000}{1763000}}$ oe or M1 for $58000=1763000(k)^{21}$
1(e)	1239.75	2	B1 for $43+0.5$ or $28+0.5$ oe seen
2(a)	103	3	M1 for angle $A B C$ or angle $A C B=\frac{1}{2}(180-26)$ oe M1 for angle $A B F=26$ or angle $C B D$ or angle $F B E=77$ or exterior angle $A C B=103$ correctly identified or in correct position

Question	Answer	Marks	Partial Marks
2(b)	75	5	B4 for 105 at a or b or 73 at c and 32 at d or B3 for 58 at m or 58 at e and 17 at k or B2 for 32 at d and 90 soi at $(c+k)$ or 32 at d and 17 at k or 73 at c or B1 for 90 soi at $(c+k)$ or between tangent and radius or 32 at d or 17 at k
3(a)	$1-r$	1	
3(b)(i)	$(1-r)(1.3-r)[=0.4]$	1	FT their(a) dep on (a) being an expression in r
3(b)(ii)	$1.3-1.3 r-r+r^{2}$ or better nfww	M1	FT their (b)(i)
	$0.9-2.3 r+r^{2}[=0]$ OR $13-13 r-10 r+10 r^{2}=4 \mathrm{oe}$	M1	Strict FT their expansion to a quadratic then equating to 0.4 and then collecting to 3 terms on 'one side' OR Strict FT their expansion to a quadratic $=0.4$ all multiplied by 10
	$10 r^{2}-23 r+9=0$	A1	no errors or omissions seen

Question	Answer	Marks	Partial Marks
3(b)(iii)	$(5 r-9)(2 r-1)[=0]$	B2	or B2 for e.g. $5 r(2 r-1)-9(2 r-1)$ and then $5 r-9=0$ and $2 r-1=0$ or B1 for $5 r(2 r-1)-9(2 r-1)[=0]$ or $2 r(5 r-9)-1(5 r-9)[=0]$ or $(5 r+a)(2 r+b)[=0]$ where a, b are integers and $a b=+9$ or $2 a+5 b=-23$ If 0 scored, SC1 for $5 r-9$ and $2 r-1$ seen but not in factorised form
	$[r=] \frac{9}{5} \text { oe }[r=] \frac{1}{2} \text { oe }$	B1	
3(b)(iv)	$0.8 \text { or } \frac{4}{5} \text { oe }$	1	
4(a)(i)	1.5 oe	1	
4(a)(ii)	$(0,2)$	1	
4(b)(i)	$y=-2 x+6$ oe final answer	3	B2 for $y=-2 x+c$ oe or $y=m x+6$ oe $m \neq 0$ or for answer $-2 x+6$ or $\mathbf{B 1}$ for [gradient $=$] $-\frac{6}{3}$ oe or $c=+6$ soi
4(b)(ii)	$y=0.5 x-1.5$ oe final answer	3	B1 for [gradient =] - 1 divided by their gradient from (b)(i) evaluated soi M1 for substitution of $(9,3)$ into $y=($ their $m) x+c$ seen in working
4(c)(i)	12.6 or 12.64 to 12.65	3	M2 for $\sqrt{(8--4)^{2}+(5-1)^{2}}$ oe or M1 for $(8--4)^{2}+(5-1)^{2}$ oe
4(c)(ii)	$(2,3)$	2	B1 for each
5(a)	$2.45,0.25,-0.25$	3	B1 for each
5(b)	Fully correct smooth curve	4	B3FT for 6 or 7 points or B2 FT for 4 or 5 points or B1 FT for 2 or 3 points
5(c)	0.7 to 0.8	1	FT their curve
5(d)(i)	Correct ruled line	2	M1 for good freehand, or ruled line with gradient -1.05 to -0.95 or ruled line through $(0,2)$ but not line $y=2$

Question	Answer	Marks	Partial Marks
5(d)(ii)	Both intersections of their (b) and their (d)(i)	2	Strict FT intersection of their (b) and their (d)(i) B1FT for one correct OR B2 for 0.27 to 0.28 and 2.38 to 2.39
5(e)	Substitutes $x=\sqrt{2}$ into $\frac{1}{2 x}-\frac{x}{4}$ OR Identifies $y=0$ oe OR Correctly manipulates to a single fraction e.g. $\frac{2-x^{2}}{4 x}$ oe seen	M1	
	Concludes 'read the graph at $y=0$ ' oe OR Manipulates $0=\frac{1}{2 x}-\frac{x}{4}$ oe leading to $x^{2}=2$ OR States $\frac{2-x^{2}}{4 x}$ oe $=0$ leading to $x^{2}=2$	A1	
6(a)	$x^{2}+4 x-21$ final answer	2	B1 for three of $x^{2},+7 x,-3 x,-21$
6(b)(i)	$5 q^{2}\left(3 p^{2}-5 q\right)$ final answer	2	B1 for $5\left(3 p^{2} q^{2}-5 q^{3}\right)$ or $q^{2}\left(15 p^{2}-25 q\right)$ or $q\left(15 p^{2} q-25 q^{2}\right)$ or $5 q\left(3 p^{2} q-5 q^{2}\right)$ or for correct answer seen
6(b)(ii)	$(2 g+5 k)(2 f+3 h)$ final answer	2	B1 for $2 g(2 f+3 h)+5 k(2 f+3 h)$ or $2 f(2 g+5 k)+3 h(2 g+5 k)$ or for correct answer seen
6(b)(iii)	$(9 k+m)(9 k-m)$ final answer	2	M1 for $(9+m)(9-m)$ or for correct answer seen

Question	Answer	Marks	Partial Marks
6(c)	5.5	4	M1 for $5 \times 3(x-4)+x+2=5 \times 6$ M1 for $15 x-60+x+2=30$ FT their first step or $3 x-12+\frac{x+2}{5}=6$ If M0M0, SC1 for $3 x-12+x+2=30$ oe M1dep for $16 x=88$ FT their previous steps
7(a)	$\begin{aligned} & 180-\frac{360}{5} \text { or } \\ & \frac{(5-2) \times 180}{5} \text { or } \frac{(2 \times 5-4) \times 90}{5} \text { or } \\ & \frac{5 \times 180-360}{5} \end{aligned}$	M2	or M1 for $\frac{360}{5}$ or $(5-2) \times 180$ or $90(2 \times 5-4)$ or $3 \times 180 \div 5$ or $6 \times 90 \div 5$ or $5 \times 180-360$ If 0 scored, $\mathbf{S C 1}$ for $\frac{5-2 \times 180}{5}$
7(b)(i)	7.05 or 7.053 ...	3	M2 for $12 \times \cos 54$ oe or M1 for implicit form or B1 for length of edge of pentagon $=14.1$ to 14.11 If 0 scored, SC1 for right angle at M
7(b)(ii)(a)	22.8 or 22.81 to $22.83 \ldots \mathrm{nfww}$	3	M2 for $\frac{\text { their }(\mathbf{b})(\mathbf{i})}{\cos 72}$ oe or M1 for implicit form oe or $\mathbf{B 1}$ for $A X=36.9$ or 36.93 to 36.94
7(b)(ii)(b)	179 or 179.1 to $179.3 \ldots$	3	M2 for $\frac{1}{2} \times 12 \times$ their $A X \times \sin 54$ oe or $\frac{1}{2} \times 12 \times$ their $O X \times \sin 108$ oe or $\frac{1}{2} \times$ their $A X \times$ their $O X \times \sin 18$ or $\frac{1}{2} \times 12^{2} \times \sin 72+$ area $O B X$ oe or $\frac{1}{2} \times 12^{2} \times \sin 72+$ area $O M B+$ area $M B X$ oe or M1 for a correct method to find area of one relevant triangle $A O B, O M B, M B X, O B X$ or $O N X$ seen
8(a)(i)	15.7 or 15.70...	4	M2 for $16.5^{2}+12.4^{2}-2 \times 16.5 \times 12.4 \times \cos 64$ or M1 for implicit form A1 for 246 to 247

Question	Answer	Marks	Partial Marks
8(a)(ii)	18.7 or 18.68 to 18.69	4	B1 for 32 or angle $D B M=37$ or angle $C B M=58$ M2 for $\frac{12.4 \times \sin 53}{\sin 32}$ oe or M1 for implicit form oe
8(b)(i)	116.1 or 116.08 to 116.09...	2	M1 for $\frac{y}{360} \times 2 \times \pi \times 3.8=7.7 \mathrm{oe}$
8(b)(ii)	14.6 or 14.61 to $14.63 \ldots$	2	M1 for $\frac{\text { their }(\mathbf{b})(\mathbf{i})}{360} \times \pi \times 3.8^{2}$ oe
9(a)	12.8[0]	4	M1 for midpoints soi M1 for use of $\sum f m$ with m in correct interval including both boundaries M1 (dep on 2 nd M1) for $\sum \mathrm{fm} \div 100$
9(b)	$54 \quad 8493$	2	B1 for 2 correct or 1 error and 2 correct or FT
9(c)	correct diagram with all points correctly plotted	3	B1FT their (b) for plots at 5 correct heights B1 for 5 points at upper ends of intervals on correct vertical line B1FT (dep on at least B1) for increasing curve or polygon through 5 points After 0 scored, SC1FT for 4 correct points plotted
9(d)(i)	9 to 9.8 final answer	1	
9(d)(ii)	8.5 to 11.5	2	B1 for [UQ =] 15.5 to 17.5 or [LQ =] 6 to 7 seen
9(d)(iii)	10, 11 or 12	2	B1 for 88 to 90 seen or for answer between 10 and 12
10(a)(i)	18[.0] or 17.99 to $18.00 \ldots$	3	M2 for $\sqrt[3]{\frac{24430 \times 3}{4 \pi}}$ oe or M1 for $\frac{4}{3} \pi r^{3}=24430$
10(a)(ii)	447 or 446.8 to 446.9...	3	M2 for $\pi \times 50^{2} \times 60-24430$ oe or M1 for $\pi \times 50^{2} \times 60$ oe

Question	Answer	Marks	Partial Marks
10(b)	4 [hours] 30 [mins] nfww	4	$\begin{aligned} & \text { B3 for } 16200 \text { or } 4.5 \text { or } 270 \\ & \text { or } \mathbf{M 2} \text { for } \frac{\text { figs } 18 \times \text { figs } 15 \times \text { figs } 12}{\text { figs } 2} \text { oe } \\ & \text { or } \mathbf{M 1} \text { for figs } 18 \times \text { figs } 15 \times \text { figs } 12 \text { oe } \end{aligned}$
10(c)	12.5 or $12.50 \ldots$	3	M2 for $17 \times \sqrt{\frac{159.5}{295}}$ oe or M1 for $\sqrt{\frac{159.5}{295}}$ or $\sqrt{\frac{295}{159.5}}$ seen or for $\frac{159.5}{295}=\frac{x^{2}}{17^{2}}$ oe
11(a)	$\begin{array}{ll} 40 & 54 \\ 26 & 34 \end{array}$	4	B1 for each
11(b)	$n^{2}+3 n$ or $n(n+3)$ oe	2	B1 for a quadratic expression or for 2 nd common difference 2 (at least 2 shown) or for 2 correct equations seen or for subtracting n^{2}
11(c)	100	2	M1 for their (b) $=10300$ seen
11(d)	$[a=] \frac{1}{2} \mathrm{oe}$ and $[b=] \frac{5}{2} \mathrm{oe}$	2	B1 for each or M1 for one correct equation or for 2 nd difference $=1$ soi (at least 2 shown)

MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2019 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	6h 27 mins	2	B1 for answerh 27 mins
1(a)(ii)	$150 \mathrm{~km} / \mathrm{h}$	3	$\begin{aligned} & \text { M2 for } \frac{90}{36} \times 60 \\ & \text { or M1 for } \frac{90}{\text { their time }} \end{aligned}$ or $\mathbf{B 1}$ for 36 [mins] seen
1(a)(iii)	780	4	M3 for $\left(90 \times \frac{35}{3600}\right) \times 1000-95 \mathrm{oe}$ or M2 for $\left(90 \times \frac{35}{3600}\right) \times 1000 \mathrm{oe}$ or $\mathbf{B 1}$ for figs 875 or M1 for $90 \times \frac{35}{3600}$ seen or for $90 \times \frac{1000}{3600}$ oe If 0 scored, SC1 for their distance (> 95) - 95
1(b)(i)	7 : 5	1	
1(b)(ii)	66.7 or 66.66 to 66.67	3	M2 for $\frac{140-84}{84}[\times 100]$ oe or for $\frac{140}{84} \times 100 \mathrm{oe}$ or M1 for $\frac{140}{84}$ oe
1(b)(iii)	24576	5	M4 for complete method, $40 \times 60+0.7 \times 220 \times 84+0.3 \times 220 \times 140$ oe OR B1 for 40 [children] M1 for $0.7 \times 220 \times 84$ oe M1 for $0.3 \times 220 \times 140$ oe B1 for 2400 or 12936 or 9240 nfww

Question	Answer	Marks	Partial Marks
1(c)	$3.5 \times 10^{5} \mathrm{nfww}$	3	M2 for $3.08 \times 10^{5} \div\left(\frac{100-12}{100}\right)$ oe or M1 for $3.08\left[\times 10^{5}\right]$ associated with (100-12)\%
2(a)	-10	2	M1 for $-17-3=7 x-5 x$ oe or better
2(b)	$-1,0,1,2$ final answer	3	B2 for 3 correct values and no incorrect values or 4 correct values and one incorrect value or M2 for $-\frac{7}{4}<n \leqslant 2$ oe or M1 for $-\frac{7}{4}<n \leqslant k$ or $k<n \leqslant 2$ oe
2(c)(i)	a^{9}	1	
2(c)(ii)	$125 x^{3} y^{6}$ final answer	2	B1 for 2 correct elements if in form $k x^{n} y^{m}$
2(c)(iii)	$\frac{4 y^{[1]}}{3 x^{4}}$ final answer	3	B2 for $\left(\frac{3 x^{4}}{4 y^{[1]}}\right)^{[-1]}$ oe seen OR B1 for $3 x^{4}$ or $4 y^{[1]}$ and M1 for $\left(\frac{64 y^{3}}{27 x^{12}}\right)^{\left[\frac{1}{3}\right]}$ oe If 0 scored, SC1 for $\frac{64 y^{[1]}}{27 x^{4}}$ or $\frac{0.333 x^{-4}}{0.25 y^{-1}}$ seen
3(a)(i)	Image at (-5, 4), (-2, 4), (-4, 6)	2	B1 for translation by $\binom{-3}{k}$ or $\binom{k}{2}$
3(a)(ii)	Image at (2, 1), (4, -1), (2, -2)	2	B1 for reflection in $y=-x$ or $y=x$ drawn
3(b)	Rotation 90° [anticlockwise] oe $(1,-1)$	3	B1 for each
3(c)(i)	$\left(\begin{array}{rr}-2 & 0 \\ 0 & -2\end{array}\right)$	2	B1 for 2 by 2 matrix with one correct row or column
3(c)(ii)	Strict FT their (c)(i)	1	Answer not equal to zero FT their (c)(i) only if 2 by 2

Question	Answer	Marks	Partial Marks
4(a)(i)	$\frac{1}{2} \times \frac{4}{3} \times \pi \times 5.6^{3}$	M1	
	367.8 ... to 367.9	A1	
4(a)(ii)	3.06 or 3.060 to 3.061...	4	M1 for 0.8×368 [$=294.4]$ M2 for $\left[r^{2}=\right] \frac{\text { their } 294.4}{10 \pi}$ oe or M1 for $\pi r^{2} \times 10=$ their 294.4 oe
4(b)(i)	$44[.0]$ or 43.98 to 43.99 nfww	5	B2 for [slant height $=] \frac{25}{4} \mathrm{oe}$ or M1 for $\left[l^{2}=\right] 6^{2}+1.75^{2}$ oe M2 for $\pi \times 1.75 \times$ their $l+\pi \times 1.75^{2}$ or M1 for $\pi \times 1.75 \times$ their l or $\pi \times 1.75^{2}$
4(b)(ii)(a)	$\mathrm{SF}=\frac{1}{4} \text { oe soi }$	B1	
	$\frac{1}{3} \pi \times 1.75^{2} \times 6-\frac{1}{3} \pi \times \text { their } 0.4375^{2} \times 1.5$ OR $\frac{1}{3} \pi \times 1.75^{2} \times 6 \times\left(1-\left(\frac{1}{4}\right)^{3}\right)$ oe	M2	M1 for $\frac{1}{3} \pi \times 1.75^{2} \times 6$ or $\frac{1}{3} \pi \times$ their $0.4375^{2} \times 1.5$ OR M1 for $1-\left(\frac{1}{4}\right)^{3}$ oe
	18.94 or 18.939 to 18.944...	A1	
4(b)(ii)(b)	95 final answer	3	B2 for 94.5 or 94.69 to 94.722 OR M2 for $18.9 \times 10^{3} \div 200$ oe or M1 for 18.9×10^{3} or $200 \div 10^{3}$ or figs $189 . . \div 200$ or $18.9 . . \div$ figs 2
5(a)(i)	-3	1	
5(a)(ii)	6.2 to 6.4 oe	2	M1 for 3 seen or used
5(b)	$y=5-3 x$ ruled	2	B1 for $y=5-3 x$ soi or ruled line with gradient -3 or with y-intercept at 5 (but not $y=5$) or B1FT for incorrect line equation/expression shown in working and their line correctly drawn
	$\begin{array}{\|l} -0.3 \text { to }-0.2 \\ 1.65 \text { to } 1.8 \end{array}$	2	B1 for each, dep on $y=5-3 x$ drawn or FT their line provided equation/expression shown in working, dep on B1FT for line

Question	Answer	Marks	Partial Marks
5(c)	Tangent ruled at $x=-2$	1	B1 for correct tangent
	-4.5 to -2.5	2	Dep on B1 for tangent or close attempt at tangent at $x=-2$ M1 for rise/run also dep on tangent drawn or close attempt at correct tangent Must see correct or implied calculation from a drawn tangent
5(d)(i)	8, 4, 0.25 oe	3	B1 for each
5(d)(ii)	Correct graph	3	B2FT for 6 or 7 correct plots or B1FT for 4 or 5 correct plots
5(d)(iii)	1.8 to 1.9	1	
6(a)	40.5 or 40.45 [8..] or 40.46 nfww	4	M1 for $25,32.5,37.5,50,80$ soi M1 for $\Sigma f t$ M1 dep for their $\Sigma f t \div 120$
6(b)	Fully correct histogram	4	B1 for each correct bar If 0 scored, SC1 for frequency densities of 5.4, 4.2, 0.8 and 0.45 seen
7(a)	$[y=] 4 x+5$	3	B2 for answer [$y=] 4 x+c$ oe (c can be numeric or algebraic) OR M2 for $\frac{y-9}{x-1}=\frac{9-(-3)}{1-(-2)}$ oe OR M1 for $\frac{9--3}{1--2}$ oe or for M1 for correct substitution of $(-2,-3)$ or $(1,9)$ into $y=($ their $m) x+c$ oe
7(b)	76[.0] or 75.96...	2	M1 for $\tan []=4 \mathrm{oe}$

Question	Answer	Marks	Partial Marks
7(c)(i)	$[y=]-\frac{1}{4} x+\frac{23}{8} \text { oe }$	3	$\mathbf{B 2 F T}$ for $[y=]-\frac{1}{\text { their gradient from (a) }} x+c$ oe (c can be numeric or algebraic) OR M2 for $\frac{y-2}{x-3.5}=-\frac{1}{\text { their gradient from (a) }}$ oe OR M1 for $-\frac{1}{\text { their gradient from (a) }}$ soi M1 for correct substitution of $(3.5,2)$ into $y=($ their $m) x+c$ oe
7(c)(ii)	$(-4.5,4)$	2	B1 for each value or for $\binom{-8}{2}$ seen
8(a)(i)	$\frac{x-1}{x+2}$	2	B1 for either numerator or denominator correct
8(a)(ii)(a)	$\frac{x}{x+3} \times \frac{x-1}{x+2}=\frac{7}{15}$	B1	
	$15 x(x-1)=7(x+3)(x+2)$	M1	Removes all algebraic fractions FT their equation if in comparable form
	$15 x^{2}-15 x=7 x^{2}+21 x+14 x+42$	M1	Correctly expands all brackets FT their equation if in comparable form
	$\begin{aligned} & {\left[8 x^{2}-50 x-42=0\right]} \\ & 4 x^{2}-25 x-21=0 \end{aligned}$	A1	With no errors or omissions seen and one further stage seen after final M1
8(a)(ii)(b)	$(4 x+3)(x-7)[=0]$	M2	M1 for $4 x(x-7)+3(x-7)$ or $x(4 x+3)-7(4 x+3)$ or for $(4 x+a)(x+b)$ where either $a b=-21$ or $4 b+a=-25$ If 0 scored, SC1 for $4 x+3$ and $x-7$ seen but not in factorised form
	$7 \text { and }-\frac{3}{4}$	B1	
8(a)(ii)(c)	7	1	FT their positive solution

Question	Answer	Marks	Partial Marks
8(b)	$\frac{1}{6} \text { oe }$	4	M3 for $\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7}+\frac{4}{9} \times \frac{3}{8} \times \frac{2}{7}$ or M2 for $\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7}$ or $\frac{4}{9} \times \frac{3}{8} \times \frac{2}{7}$ or M1 for $\frac{5}{9}, \frac{4}{8}, \frac{3}{7}$ seen or $\frac{4}{9}, \frac{3}{8}, \frac{2}{7}$ seen If 0 scored, $\mathbf{S C 1}$ for $\frac{5^{3}+4^{3}}{729}$ oe
9(a)(i)	$\begin{aligned} & \angle A C D=46 \text { soi } \\ & \text { or } \\ & \angle C D E=44 \text { soi } \end{aligned}$	B2	B1 for angle $A D C=108$ or angle $D C B=18$
	$\frac{58 \sin 108}{\sin \text { their } 46}$	M2	M1 for $\frac{\sin 108}{x}=\frac{\sin \text { their } 46}{58}$ oe
	76.68... nfww	A1	
9(a)(ii)	10.9 or 10.91 to 10.94	3	B2 for $[A B=] 68.9$ or 68.91 to 68.94 or M2 for a correct explicit statement for $A B$ or BD or M1 for $\frac{A B}{76.7}=\cos 26$ oe
9(b)(i)	10.4 or 10.43 to 10.44	4	M3 for $\sqrt{\frac{70}{\sin 40}}$ oe or M2 for $x^{2} \times \sin 40=70$ oe or M1 for $\frac{1}{2} x \times 2 x \times \sin 40=70$
9(b)(ii)	140	1	
10(a)(i)	3, -1	2	B1 for each
10(a)(ii)	$23-4 n$ oe final answer	2	M1 for $k-4 n$ or $23-j n(j \neq 0)$
10(a)(iii)	22	2	M1 for their (a)(ii) $=-65$
10(b)	23	2	B1 for 37 or 60

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/42
Paper 4 (Extended)
March 2019
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2019 series for most Cambridge IGCSE ${ }^{\text {™ }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	473	2	M1 for $645 \div(11+4)$
1(b)	212.5	2	M1 for 50×4.25
1(c)	31.5 or 31.45 to 31.46	3	M2 for $54 \div 1 \frac{43}{60}$ oe or M1 for time $=1 \mathrm{~h} 43 \mathrm{~min}$ or 103 [mins] or $54 \div$ their time
1(d)	875	1	
1(e)	10.4 or 10.38 to 10.39	1	
1(f)(i)	$30[\times] 70$ and 2100	1	
1(f)(ii)	both numbers rounded up oe	1	
2(a)(i)	Reflection $x=1.5$	2	B1 for each
2(a)(ii)	Rotation $(0,-1)$ 90° [anticlockwise] oe	3	B1 for each
2(b)(i)	Image at $(5,-1)(6,-1)(6,-3)$	2	B1 for correct size and orientation but wrong position If 0 scored, SC1 for enlargement SF $\frac{1}{2}$ with centre $(3,0)$
2(b)(ii)	Image at (-6, 3) (-4, 3) (-6, 7)	2	B1 for translation $\binom{-3}{k}$ or $\binom{k}{1}$
2(b)(iii)	Image at $(2,-1)(2,-3)(6,-3)$	3	M2 for 3 correct coordinates soi or M1 for $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{rrr}-1 & -3 & -3 \\ 2 & 2 & 6\end{array}\right)$ or $\mathbf{B 1}$ for stating reflection in $y=x$

Question	Answer	Marks	Partial Marks
3(a)	$\frac{5}{9} \mathrm{oe}$	1	
3(b)	$\frac{80}{153} \text { oe }$	3	M2 for $2 \times \frac{10}{18} \times \frac{8}{17}$ oe or M1 for $\frac{10}{18} \times \frac{8}{17}$ oe If 0 scored, $\mathbf{S C 1}$ for $\frac{160}{324}$ oe
3(c)	$\frac{11}{51} \mathrm{oe}$	4	M3 for $\frac{10}{18} \times \frac{9}{17} \times \frac{8}{16}+\frac{8}{18} \times \frac{7}{17} \times \frac{6}{16}$ oe or M2 for $\frac{10}{18} \times \frac{9}{17} \times \frac{8}{16}$ oe or $\frac{8}{18} \times \frac{7}{17} \times \frac{6}{16}$ oe or M1 for $\frac{10}{18}, \frac{9}{17}, \frac{8}{16}$ or $\frac{8}{18}, \frac{7}{17}, \frac{6}{16}$ If 0 scored, $\mathbf{S C 1}$ for $\frac{1512}{5832}$ oe
4(a)	Correct ruled line with D marked	2	B1 for correct ruled line or short line
4(b)	47.5	2	B1 for 9.5 or 95 mm seen or for answer figs 465 to figs 485
4(c)	Correct arc radius 7 cm	2	B1 for complete arc other radius, centre A or correct but short arc
	Correct ruled perpendicular bisector of $B C$ with correct pairs of arcs	2	B1 for correct perpendicular bisector without correct arcs or for correct arcs, no/incorrect line
	Correct ruled bisector of angle $B C D$ with correct pairs of arcs	2	B1 for correct angle bisector without correct arcs or for correct arcs, no/incorrect line
	correct region shaded	1	Dep on at least B1B1B1 and five boundaries one of which is an arc
4(d)	[1:] 500	1	

Question	Answer	Marks	Partial Marks
5(a)	-2.1, 1.6, -1.7, 2.1	3	B2 for 3 correct or B1 for 2 correct
5(b)	Fully correct curve	4	B3FT for 8 or 9 correct plots or B2FT for 6 or 7 correct plots or B1FT for 4 or 5 correct plots
5(c)	line $y=\frac{1}{2}(1-x)$ ruled	M2	M1 for line with gradient $-\frac{1}{2}$ M1 for line through $\left(0, \frac{1}{2}\right)$ but not $y=\frac{1}{2}$
	$\begin{aligned} & -2.15 \text { to }-2.01 \\ & -0.45 \text { to }-0.2 \\ & 2.25 \text { to } 2.45 \end{aligned}$	B2	B1 for two correct
5(d)	number of intersections of their curve and the line $y=1$	D	strict FT for their curve
6(a)	5.83 or 5.832 to 5.833	5	B2 for sector angle $=210$ soi or M1 for $[\cos D O E=] \frac{0.25}{0.5}$ oe M2 for $\frac{\text { their } 210}{360} \times 2 \times \pi \times 0.5+2 \times 1.5+2 \times 0.5 \mathrm{oe}$ or M1 for $\frac{\text { their } 210}{360} \times 2 \times \pi \times 0.5$ oe isw
6(b)	1.21 or 1.208...	3	M2 for $\frac{\text { their } 210}{360} \times \pi \times 0.5 \times 0.5+1.5 \times 0.5$ oe or M1 for $\frac{\text { their } 210}{360} \times \pi \times 0.5 \times 0.5$ oe isw
6(c)(i)	4[.00...]	3	$\begin{aligned} & \text { M2 for } 0.5 \times \sqrt{\frac{77.44}{\text { their } \mathbf{(b)}}} \text { oe } \\ & \text { or M1 for } \sqrt{\frac{77.44}{\text { their } \mathbf{(b)}}} \text { or } \sqrt{\frac{\operatorname{their}(\mathbf{b})}{77.44}} \\ & \text { or for } \frac{\text { their } \mathbf{(\mathbf { b })}}{77.44}=\frac{0.5^{2}}{r^{2}} \text { oe } \end{aligned}$
6(c)(ii)	2.20704	3	M2 for $77.44 \times 1.5 \times 19 \div 1000$ oe or M1 for figs 2207[04] or figs 221 seen or [$\mathrm{vol}=] 77.44 \times 1.5$

Question	Answer	Marks	Partial Marks
7(a)(i)	111.25	$\mathbf{4}$	$\begin{array}{l}\text { M1 for midpoints soi } \\ (25,75,112.5,137.5,175) \\ \text { M1 for } \sum f x \text { with } x \text { in correct interval } \\ \text { including both boundaries }\end{array}$
M1 (dep on 2nd M1) for $\sum f x \div 20$			

Question	Answer	Marks	Partial Marks
8(f)(i)	$(8 x-5)^{2}+6=19$	M1	
	$64 x^{2}-40 x-40 x+25$	B1	
	$64 x^{2}-40 x-40 x+25+6=19 \text { oe }$ $\text { leading to } 16 x^{2}-20 x+3=0$	A1	with no errors and must show $(8 x-5)^{2}+6=19$ with no omissions after this
8(f)(ii)	$\frac{[--] 20 \pm \sqrt{([-] 20)^{2}-4(16)(3)}}{2 \times 16} \mathrm{oe}$	2	B1 for $\sqrt{([-] 20)^{2}-4(16)(3)}$ or better or B1 for $\frac{[--] 20+\sqrt{q}}{2(16)}$ oe or $\frac{[--] 20-\sqrt{q}}{2(16)}$
	0.17 and 1.08 final ans	2	B1 for each If 0 scored, $\mathbf{S C 1}$ for answer 0.2 and 1.1 or answer -0.17 and -1.08 or $0.174 \ldots$ and 1.075 to 1.076 seen or 0.17 and 1.08 seen in working
9(a)(i)(a)	ϵ	1	
9(a)(i)(b)	$A \cap B$	1	
9(a)(ii)	B or A^{\prime}	1	
9(b)		1	
9(c)(i)	$3 x+7=19$ oe	M1	must see 19 and 7
	$3 x=19-7$ or better leading to $x=4$	A1	with no errors seen
9(c)(ii)		2	B1 for 2 correct
9(c)(iii)	\varnothing or $\}$	1	
9(c)(iv)	15	1	

Question	Answer	Marks	Partial Marks
10(a)	correctly equating one set of coefficients	M1	or making x or y the subject of one equation correctly
	correct method to eliminate one variable	M1	or substitution for x or y for their rearranged formula
	$\begin{aligned} & x=7 \\ & y=-3 \end{aligned}$	A2	A1 for one correct value If A0 scored, SC1 for 2 values satisfying one of the original equations or if no working shown, but 2 correct answers given
10(b)	2	3	M1 for $y=\frac{k}{(x+3)^{2}}$ oe M1 for $y=\frac{\text { their } k}{(7+3)^{2}}$ oe OR M2 for $8(2+3)^{2}=y(7+3)^{2}$ oe
10(c)	$x>-5$ final answer	3	M1 for $3 x-6<7 x+14$ M1 for their (-6) - their $14<7 x-3 x$ oe
11(a)(i)	$77 \quad 243$	2	B1 for each
11(a)(ii)(a)	$2 n^{2}+5$ oe	2	M1 for a quadratic expression as the answer or B1 for common 2nd difference of 4
11(a)(ii)(b)	$3^{n-1} \mathrm{oe}$	2	B1 for 3^{k} oe where k is a linear function of n
11(b)(i)	21	1	
11(b)(ii)	11	3	B2 for $(4 n+45)(n-11)$ seen or B1 for $4 n^{2}+n+3=498$ oe

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

MATHEMATICS
 0580/41

Paper 4 (Extended)
October/November 2018
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	2.25 final answer	2	M1 for $\frac{3}{5+3}$ or $\frac{6}{5+3}$ oe
1(a)(ii)	37.5	1	$\text { FT } \text { their } \frac{(\mathbf{a})(\mathbf{i})}{6} \times 100$
1(a)(iii)	$5.5[0]$ or 5.499 to 5.500	2	M1 for $6 \div 1.091$
1(b)	21	3	M2 for $15 \times \sqrt{\frac{352.8}{15 \times 12}}$ oe or SC2 for answer 16.8 or M1 for $\sqrt{\frac{352.8}{15 \times 12}}$ or $\sqrt{\frac{15 \times 12}{352.8}}$ seen or M1 for a correct implicit statement for the length
1(c)	525	3	M2 for $\frac{483}{100-8}[\times 100]$ oe or M1 for 483 associated with 92 [\%]
2(a)(i)	Translation $\binom{5}{8}$	2	B1 for each Accept 5 right and 8 up
2(a)(ii)	Enlargement [sf] 0.5 oe [centre] ($0,-7$)	3	B1 for each
2(a)(iii)	Rotation 90 [anticlockwise] oe Origin oe	3	B1 for each
2(b)	$\begin{aligned} & \text { Image at }(-8,1)(-8,5)(-8,7) \\ & (-4,1) \end{aligned}$	2	B1 for reflection of flag A in the line $x=-1$ or $y=k$ or for vertices of triangle in correct place but not joined

Question	Answer	Marks	Partial Marks
3(a)	$\begin{array}{llll}0 & -2 & 0.9\end{array}$	3	B1 for each
3(b)		4	B3 FT for 9 or 10 points or B2 FT for 7 or 8 points or B1 FT for 5 or 6 points
3(c)	$\begin{aligned} & \hline-0.45 \text { to }-0.35 \\ & 1 \\ & 2.35 \text { to } 2.45 \end{aligned}$	3	FT their graph B1 for each in the correct position If zero scored, SC1FT for 3 correct values
3(d)(i)	$y=1-x$ oe	2	B1 for $y=1-k x$ oe, $k \neq 0$ or $y=k-x$ oe or $1-x$
3(d)(ii)	Correct ruled line and 2.25 to 2.4	3	B2FTdep for correct ruled line or B1 dep for line through $(0,1)$ when extended but not $y=1$ or with gradient -1.1 to -0.9 or correct line but freehand or SC2 for $y=x-1$ ruled after answer $[y=] x-1$ in (d)(i) and B1 for 2.25 to 2.4
3(e)	Correct tangent and 1.7 to 3.7	3	No daylight between tangent and curve at $x=-0.25$. Point of contact is the midpoint between two vertices of daylight and this point of contact must be between -0.35 and -0.15 B2 for close attempt at tangent at $x=-0.25$ and answer in range OR B1 for ruled tangent at $x=-0.25$, no daylight Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x=-0.35$ and -0.15 and M1 dep on B1 or close attempt at tangent at $x=-0.25$ for $\frac{\text { rise }}{\text { run }}$
4(a)	100.2 nfww	4	M1 for midpoints soi $65,80,95,105$, 112.5, 120 M1 for use of $\sum f x$ with x in correct interval including both boundaries M1dep for $\sum f x \div 180$ dep on previous M1
4(b)	$\begin{aligned} & 0.8 \\ & 2.8 \\ & 0.65 \end{aligned}$	3	B1 for each If zero scored, SC1 for 1.6, 5.6 and 1.3 seen

Question	Answer	Marks	Partial Marks
4(c)	$\begin{array}{lllll}8 & 34 & 69 & 136 & 164\end{array}$	2	B1 for one error $\mathbf{F T}$ other values or for 3 or 4 correct
4(d)	Correct diagram	3	B1FT for correct vertical placement for 6 plots B1 for correct horizontal placement for 6 plots B1FT dep on at least B1 for reasonable increasing curve or polygon through their 6 points If zero scored, SC1FT for 5 out of 6 correct plots
4(e)(i)	15 to 17	2	$\begin{aligned} & \text { B1 for }[\mathrm{LQ}=] 93 \text { to } 94 \text { or }[\mathrm{UQ}=] 109 \text { to } \\ & 110 \end{aligned}$
4(e)(ii)	107 to 109	2	B1 for 126 seen
4(e)(iii)	66 to 72	2	FT their graph for 2 marks B1 for answer 106 to 114 or B1FT their graph reading at 106 cm seen
5(a)(i)	$\begin{aligned} & {[h=] 253.8 \div 18 \div\left(\frac{6}{2}\right)} \\ & {[h=] \frac{253.8 \times 2}{6 \times 18} \text { or }} \\ & {[h=] \frac{253.8}{18 \times \frac{6}{2}}} \end{aligned}$	3	For M3 no errors at any stage M2 for $253.8=\frac{1}{2} \times 6 \times h \times 18$ oe (no previous errors) or M1 for triangle area $=\frac{1}{2} \times 6 \times h$ soi
5(a)(ii)	38.1 or 38.06 to 38.08	2	M1 for $\tan =\frac{4.7}{6}$ oe
5(b)	358 or 357.9 to 358	6	M1 for $6^{2}+4.7^{2}$ M1 for $\sqrt{6^{2}+4.7^{2}} \times 18[\times 2]$ M1 for $6 \times 18[\times 2]$ M1 for 4.7×18 M1 for $2 \times \frac{1}{2} \times 6 \times 4.7$ oe
6(a)(i)	14	1	
6(a)(ii)	16	1	
6(a)(iii)	$\frac{20}{462} \mathrm{oe}$	3	M2 for $\frac{5}{22} \times \frac{4}{21}$ or M1 for $\frac{5}{22}$ seen

Question	Answer	Marks	Partial Marks
6(a)(iv)	Correct shading		1

Question	Answer	Marks	Partial Marks
8(c)	$y=-\frac{4}{5} x-2 \text { oe }$	2	FT their gradient from $\mathbf{8 (b)}$ B1 for $y=($ their gradient $) x+c(c \operatorname{not} 0)$ or for $y=m x-2(m \neq 0)$ or for $-\frac{4}{5} x-2$ alone
8(d)(i)	$y=\frac{5}{4} x+4 \text { oe }$	3	M1 for $-\frac{1}{\text { their } \text { gradient }}$ from $\mathbf{8 (b)}$ M1 for $(8,14)$ substituted into their $y=m x+c$ or $\frac{y-14}{x-8}=m$ or better
8(d)(ii)	8.54 or 8.544...	3	M2 for $(14-\text { their } 6)^{2}+(8-\text { their } 5)^{2}$ or better or M1 for 14 -their 6 and 8 -their 5 seen
8(d)(iii)	$(4,6)$	2	B1 for each
9(a)(i)	$\frac{72}{m}$	1	
9(a)(ii)	$\frac{72}{m+0.9}$	1	
9 (b)	$\frac{72}{m}-\frac{72}{m+0.9}=4 \mathrm{oe}$	M1	FT their (a)(i) and (a)(ii) if expressions in m
	$72(m+0.9)-72 m=4 m(m+0.9)$ oe	M1	Dependent on M1 and correct fractions
	$[72 m-72 m]+64.8=4 m^{2}+3.6 m \text { oe }$ nfww	A1	
	Correct completion to $10 m^{2}+9 m-162=0$	A1	
9 (c)(i)	3.6 and -4.5 final answer	3	B2 for $(2 m+9)(5 m-18)$ or $\frac{-9 \pm \sqrt{(9)^{2}-4(10)(-162)}}{2 \times 10}$ or better or B1 for $(a m+b)(c m+d)$ where $\mathrm{ac}=10$ and either $b d=-162$ or $a d+b c=9$ or for $\sqrt{(9)^{2}-4(10)(-162)}$ or better or $\frac{-9 \pm \sqrt{q}}{2(10)}$ or better
9(c)(ii)	20	1	

Question	Answer	Marks	Partial Marks
10(a)	132.26 to 132.28 or 132.3	5	B1 for angle $A B O$ or angle $C B O=90$ soi M1 for $\tan [X O B]=\frac{15}{8}$ oe M1 for $\tan [B O Y]=\frac{22.4}{8}$ oe A1 for $[B O Y=] 70.3 \ldots$ or $[X O B=] 61.9 \ldots$.
10(b)	18.4 or 18.5 or 18.43 to 18.48	2	M1 for $\frac{\text { their } \mathbf{(a)}}{360} \times 2 \times \pi \times 8$ oe
10(c)	75.7 to 75.9	4	M1 for $\frac{1}{2}(15+22.4) \times 8$ oe M2 for $\frac{\text { their }(\mathbf{a})}{360} \times \pi \times 8^{2}$ oe or M1 for one sector either $\frac{i n v \tan \left(\frac{15}{8}\right)}{360} \times \pi \times 8^{2} \mathrm{oe}$ $\text { or } \frac{i n v \tan \left(\frac{22.4}{8}\right)}{360} \times \pi \times 8^{2} \text { oe }$
11(a)	$5\left(m-2 p^{2}\right)\left(m+2 p^{2}\right)$ final answer	3	M2 for $(5 m+k)(m+j)$ where $k j=-20 p^{4}$ or $5 j+k=0$ or M1 for $5\left(m^{2}-4 p^{4}\right)$ seen
11(b)	$[P=] \frac{100 \mathrm{~A}}{100+T R}$ final answer	3	M1 for $100 A=100 P+P R T$ or for $A=P\left(1+\frac{R T}{100}\right)$ M1 for $100 A=P(100+R T)$ or for $\frac{A}{1+\frac{R T}{100}}=P$ or for $100 A=P(1+R T)$ after $100 A=P+P R T$ as first step

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

MATHEMATICS
 0580/42

Paper 4 (Extended)
October/November 2018
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only dep dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	1200	2	M1 for $1962 \div 1.635$
1(a)(ii)	1667.7[0] final answer	2	M1 for $1962 \times\left(1-\frac{15}{100}\right)$ oe or B1 for 294.3[0] If 0 scored, SC1 for answer 1020
1(a)(iii)	275	2	M1 for $220 \div$ their ($5-1$ soi
1b(i)	165	3	M2 for $\frac{9752-3680}{3680}[\times 100]$ oe or $\frac{9752}{3680} \times 100$ oe or M1 for $\frac{9752}{3680}$ or $9752-3680$
1b(ii)	51200	3	M2 for $\frac{74240}{100+45}[\times 100]$ oe or M1 for 74240 associated with 145 [\%] oe
2(a)	-1.5	3	M1 for $30+2 x=9-12 x$ or $10+\frac{2}{3} x=3-4 x$ M1 for collecting their terms correctly to reach $a x=b$
2(b)	$6 a b^{2}\left(2 b+3 a^{2}\right)$ final answer	2	M1 for any correct partial factorisation seen or for correct answer seen
2(c)(i)	$10 a^{5} c^{9}$ final answer	2	B1 for final answer with $10 a^{k} c^{9}$ or $10 a^{5} c^{k}$ or $k a^{5} c^{9}$
2(c)(ii)	$\frac{8 a^{6}}{c^{9}}$ or $8 a^{6} c^{-9}$ final answer	2	B1 for final answer with $\frac{8 a^{6}}{c^{k}}$ or $\frac{8 a^{k}}{c^{9}}$ or $\frac{k a^{6}}{c^{9}}[k \neq 0]$ or for correct answer seen

Question	Answer	Marks	Partial Marks
2(d)	$0.5 \text { or } \frac{1}{2}$	3	M1 for $y=\frac{k}{(x+2)^{2}}$ oe B1 for $k=50$ or M2 for $2(3+2)^{2}=y(8+2)^{2}$ oe
2(e)	$\frac{7 x-x^{2}}{2(x-2)}$ or $\frac{7 x-x^{2}}{2 x-4}$ oe final answer	3	M1 for $5 \times 2-(x-5)(x-2)$ oe seen M1 for common denominator $2(x-2)$ oe isw
3(a)	Rotation $90^{[0]}$ clockwise oe Origin oe	3	B1 for each
3(b)(i)	Image at $(-4,-1)(-4,-4)(-2,-4)$	1	
3(b)(ii)	Image at $(3,-1)(5,-1)(3,-4)$	2	B1 for translation by $\binom{7}{k}$ or $\binom{k}{-5}$ or for 3 correct points not joined
3(b)(iii)	Image at (-2, 1/2) (-2, 2) (-1, 2)	3	B2 for 3 correct co-ordinates soi in working or correct size and orientation in wrong position or M1 for $\left(\begin{array}{cc}0.5 & 0 \\ 0 & 0.5\end{array}\right)\left(\begin{array}{ccc}-4 & -4 & -2 \\ 1 & 4 & 4\end{array}\right)$ shown or for statement: enlargement, sf $0.5,(0,0)$
4(a)	$\begin{aligned} & \frac{1}{2} \times 4(x-1) \times(2 x+5)[\sin 90]=30 \\ & \text { oe } \end{aligned}$	M1	
	$8 x^{2}-8 x+20 x-20$ or better	B1	correct expansion of brackets
	Completion to $2 x^{2}+3 x-20=0$	A1	with no errors or omissions seen
4(b)	$(2 x-5)(x+4)$	M2	Allow M2 for e.g. $2 x(x+4)-5(x+4)$ then $2 x-5[=0]$ and $x+4[=0]$ M1 for $2 x(x+4)-5(x+4)$ or $x(2 x-5)+4(2 x-5)$ or $(2 x+a)(x+b)[=0]$ where $a b=-20$ or $a+2 b=3$ [a, b integers]
	2.5 and -4 cao	B1	

Question	Answer	Marks	Partial Marks
4(c)	11.7 or $11.66 \ldots$ or 11.67	3	M2dep for $(4(\text { their } 2.5-1))^{2}+(2 \times \text { their } 2.5+5)^{2}$ or M1dep for 4 (their $2.5-1$) or $2 \times$ their $2.5+5$ OR B1 for $\sqrt{20 x^{2}-12 x+41}$ and M1dep for substituting $x=$ their 2.5 into $\sqrt{20 x^{2}-12 x+41}$ at any stage
5(a)	-3, 17	2	B1 for each
5(b)	Fully correct curve	4	B3 FT for 10 or 11 points or B2 FT for 8 or 9 points or B1 FT for 6 or 7 points
5(c)(i)	Correct ruled tangent for their curve through $(0,-17)$	1	
5(c)(ii)	(1.7 to 2.2, -1 to 2.5)	1	
5(c)(iii)	$[y=] 9 x-17$ final answer	3	M2dep for answer $[y=] 9 x[+]-c$ OR M1dep for gradient $=\frac{\text { rise }}{\text { run }}$ for their tangent at any point B1 for answer $[y=] k x[+]-17(k \neq 0)$
5(d)	$\begin{aligned} & y=3 x+2 \text { ruled correctly and } \\ & -2.2 \ldots \text { to }-2.1 \\ & -0.6 \text { to }-0.4 \\ & 2.6 \text { to } 2.8 \end{aligned}$	4	B2 for $y=3 x+2$ ruled or $\mathbf{B 1}$ for $[y=] 3 x+2$ soi or $y=3 x+k$ ruled or $y=k x+2$ but not $y=2$ B2 for all 3 values or B1 for 2 values
6(a)	0.6	1	
6(b)	50.7	3	M2 for $1.2 \times 19+\frac{1}{2}(19+12) \times 1.8$ oe or M1 for method for finding any relevant area
6(c)	17.9	3	M2 for their $50.7-1.2 \times 19$ [-10] oe or M1 for 1.2×19 oe seen isw
7(a)	29	1	
7(b)	128	2	FT 180-2 (55-their (a)) M1 for angle $O C A$ or angle $O A C=55-$ their (a) soi

Question	Answer	Marks	Partial Marks
7(c)	64	1	FT their (b) $\div 2$
7(d)	116	1	FT 180 - their (c)
8(a)	370 or 370.2 to 370.3	2	M1 for $864 \div$ their time
8(b)	991 or $990.5 \ldots$	4	M2 for $864^{2}+928^{2}-2 \times 864 \times 928 \cos 67$ or M1 for correct implicit version A1 for 981100 to 981110
8(c)(i)	313	2	M1 for 180 +133 or 360-47
8(c)(ii)	[0]79.5 to [0]79.6 ...	4	M2 for $\frac{928 \times \sin 67}{\text { their } 991}$ or $\frac{864 \times \sin 67}{\text { their } 991}$ oe or M1 for implicit form of either A1 for [angle $H G B=$] 59.5 to $59.6 \ldots$ or [angle $H B G=$] 53.4 or 53.37 to 53.42 M1 dep for their angle $H G B+20$ leading to answer or for 133 - their angle $H B G$ leading to answer
9(a)(i)	42.8 or $42.79 \ldots$ nfww	4	M1 for mid-values soi M1 for $\Sigma f m$ where m is any value in interval including boundaries M1 (dep on second M1) for their $\Sigma f m \div 120$
9(a)(ii)	Blocks of height 1.84 .482 .1 with correct widths	4	B1 for each correct block If $\mathbf{B 0}, \mathbf{S C 1}$ for correct frequency densities seen
9(b)	Valid general comment about distributions	1	e.g. [On average], shoppers spend less time shopping on Wednesday oe
10(a)(i)	$75000 \times 60 \times 20$ oe	M1	Allow $\times 1200$ for $\times 60 \times 20$
10(a)(ii)	16.4 or $16.36 \ldots$	3	M2 for $\frac{9 \times 10^{7} \times 100}{1000 \times 55 \times 10^{4}}$ oe or $\mathbf{B 2}$ for answer 0.164 or $0.1636 \ldots$ or B1 for answer figs 164 or $1636 \ldots$ or M1 for figs $9 \div$ figs 55
10(a)(iii)	28.3 or 28.27 to 28.28	3	$\begin{aligned} & \text { M2 for } \frac{76}{360} \times 2 \pi \times 8.5+2 \times 8.5 \mathrm{oe} \\ & \text { or M1 for } \frac{76}{360} \times 2 \pi \times 8.5 \mathrm{oe} \end{aligned}$

Question	Answer	Marks	Partial Marks
10(b)(i)	3770 or 3769 to $3770 . .$.	2	$\text { M1 for } \frac{1}{3} \times \pi \times 10^{2} \times 36$
10(b)(ii)	3.68 or 3.683 to $3.684 \ldots$	4	M3 for $\left[r^{3}=\right] \frac{1}{2} \times$ their $\mathbf{(b)} \mathbf{(i)} \times \frac{3}{4 \pi \times 9}$ oe or M2 for $\frac{4 \pi r^{3}}{3}+\frac{4 \pi(2 r)^{3}}{3}=\frac{1}{2} \times$ their $(\mathbf{b})(\mathbf{i})$ or for $\frac{4 \pi r^{3}}{3}=\frac{1}{1+8} \times \frac{1}{2} \times$ their $(\mathbf{b})(\mathbf{i})$ or M1 for $\frac{4 \pi r^{3}}{3}+\frac{4 \pi(2 r)^{3}}{3}$ or $\frac{1}{2} \times \frac{\pi \times 10^{2} \times 36}{3}$ or $\frac{1}{2}$ their (b)(i) seen or ratio of vols $=1: 2^{3}$ oe seen
11(a)(i)	$\binom{-19}{-2}$	2	B1 for answer $\binom{-19}{k}$ or $\binom{k}{-2}$ or for $\binom{-9}{6}$ or $\pm\binom{ 10}{8}$ seen
11(a)(ii)	3.61 or 3.605 to 3.606	2	M1 for $\sqrt{([-] 3)^{2}+2^{2}}$ oe
11(a)(iii)	$\begin{aligned} -3 m+5 n & =14 \\ \text { and } 2 m+4 n & =9 \end{aligned}$	B1	Accept equivalents
	$[m=]-\frac{1}{2} \text { or }-0.5$ and $[n=] 2 \frac{1}{2} \text { or } 2.5 \text { or } \frac{5}{2}$ with evidence of a correct algebraic method	4	M1 for correctly equating one set of coefficients of their equations or rearranges one of their equations to make m or n the subject e.g. $[m=] \frac{1}{2}(9-4 n)$ oe M1 for correct method to eliminate one variable for their equations or correctly substitutes their m or their n into the other equation e.g. $-\frac{3(9-4 n)}{2}+5 n=14 \mathrm{oe}$ B1 for one correct answer
11(b)(i)(a)	$-\mathbf{a}+2 \mathbf{c}$	1	
11(b)(i)(b)	$\frac{3}{8}(-\mathbf{a}+2 \mathbf{c}) \text { or }-\frac{3}{8} \mathbf{a}+\frac{3}{4} \mathbf{c o e}$	1	FT $\frac{3}{8}($ their $(\mathbf{b})(\mathbf{i})(\mathbf{a}))$ in simplest form

Question	Answer	Marks	Partial Marks
11(b)(i)(c)	$\frac{1}{2}(5 \mathbf{a}-2 \mathbf{c}) \text { or } \frac{5}{2} \mathbf{a}-\mathbf{c} \text { oe }$	1	
11(b)(i)(d)	$\frac{1}{8}(5 \mathbf{a}-2 \mathbf{c}) \text { or } \frac{5}{8} \mathbf{a}-\frac{1}{4} \mathbf{c o e}$	2	M1 for a correct unsimplified route
11(b)(ii)	4	1	
12(a)(i)	$\frac{10}{20} \times \frac{9}{19} \text { oe }$	M2	B1 for $\frac{9}{19}$ oe seen
12(a)(ii)	$\frac{62}{95} \text { oe }$	4	M3 for $\frac{6}{20} \times \frac{14}{19}+\frac{10}{20} \times \frac{10}{19}+\frac{4}{20} \times \frac{16}{19}$ oe or $1-\frac{6}{20} \times \frac{5}{19}-\frac{10}{20} \times \frac{9}{19}-\frac{4}{20} \times \frac{3}{19}$ oe or M2 for the sum of two products of different flavours isw or M1 for one correct product of different flavours isw
12(b)	$\frac{5}{57} \text { oe }$	3	M2 for $N \times\left(\frac{4}{20} \times \frac{3}{19} \times \frac{16}{18}\right)+\frac{4}{20} \times \frac{3}{19} \times \frac{2}{18}$ oe or for $3\left(\frac{4}{20} \times \frac{3}{19} \times \frac{16}{18}\right)$ oe or $1-\left\{N \times\left(\frac{4}{20} \times \frac{16}{19} \times \frac{15}{18}\right)+\frac{16}{20} \times \frac{15}{19} \times \frac{14}{18}\right\}$ oe or M1 for $\frac{4}{20} \times \frac{3}{19} \times \frac{k}{18}$ oe seen

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/41
Paper 4 (Extended)
May/June 2018
MARK SCHEME

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)	$\frac{9}{9+7+4} \times 680$	1	
1(b)	238136	3	B2 for 238 or 136 or M1 for $\frac{7}{9+7+4} \times 680$ oe or $\frac{4}{9+7+4} \times 680$ oe seen
1(c)	272	2	M1 for 306 $\div 1.125$
1(d)	1.37	3	$\begin{aligned} & \text { M2 for }(17.56-5 \times 2.69) \div 3 \\ & \text { or } \mathbf{M 1} \text { for } 17.56-5 \times 2.69 \\ & \text { or } \mathbf{B 1} \text { for } 13.45 \text { [cost of apples] } \end{aligned}$
1(e)	40.8[0]	3	3FT for $0.3 \times$ their 136 from part (b) or M2 for their $136\left(\frac{1}{2}+\frac{1}{5}\right)$ or better or M1 for their $136 \times \frac{1}{2}$ or their $136 \times \frac{1}{5}$ or B1 for 68 or 27.2 or $\frac{3}{10}$ or 0.3 seen
2(a)(i)	9	1	
2(a)(ii)	$A B C D$ completed accurately with arcs	2	M1 for intersecting arcs radius their 9 cm or for $A B C D$ completed accurately with no arcs
2(b)	Correct ruled perpendicular bisector of $A B$ with 2 correct pairs of arcs Correct ruled bisector of angle $A B C$ with 2 correct pairs of arcs Lines intersecting	4	B2 for correct ruled perpendicular bisector of $A B$ with 2 correct pairs of arcs or B1 for correct perpendicular bisector without/wrong arcs and B2 for correct ruled bisector of angle $A B C$ with 2 correct pairs of arcs or $\mathbf{B 1}$ for correct bisector of angle $A B C$ without/wrong arcs If lines do not intersect, max B3

Question	Answer	Marks	Partial Marks
3(a)	6.06 or 6.060 to 6.061	3	$\begin{aligned} & \text { M2 for } \frac{82500-77500}{82500}[\times 100] \text { oe } \\ & \text { or M1 for } \frac{77500}{82500}[\times 100] \text { soi } \end{aligned}$
3(b)	13674 cao	3	M1 for $12000\left(1+\frac{2.2}{100}\right)^{6}$ A1 for 13673.7...
4(a)(i)	Translation $\binom{-8}{2}$ oe	2	B1 for each
4(a)(ii)	Enlargement [$\mathrm{sf}=] \frac{1}{2}$ oe $(-4,0)$	3	B1 for each
4(a)(iii)	Rotation 90° clockwise oe $(1,-1)$	3	B1 for each
4(b)	Triangle with (1, -1), (5, -1), (1,7)	2	B1 for correct size and orientation in wrong position or for 3 correct points not joined
5(a)(i)	$(2 n+m)(m-3)$ final answer	2	M1 for $m(2 n+m)-3(2 n+m)$ or $2 n(m-3)+m(m-3)$
5(a)(ii)	$(2 y-9)(2 y+9)$ final answer	1	
5(a)(iii)	$(t-4)(t-2)$ final answer	2	B1 for $(t-4)(t-2)$ seen and spoiled or M1 for $t(t-2)-4(t-2)$ or $t(t-4)-2(t-4)$ or $(t+a)(t+b)$ where $a+b=-6$ or $a b=+8$
5(b)	$[x=] \frac{2 m}{k+1}$	4	M1 for $x k=2 m-x$ or $k=\frac{2 m}{x}-1$ M1 for $x k+x=2 m$ or $k+1=\frac{2 m}{x}$ M1 for $x(k+1)=2 m$

Question	Answer	Marks	Partial Marks
5(c)	correctly eliminating one variable	M1	
	[$x=16$	A1	
	$[y=]-2$	A1	If 0 scored $\mathbf{S C 1}$ for 2 values satisfying one of the original equations or SC1 if no working shown, but 2 correct answers given
5(d)(i)	$3 m-4(m+4)=6 m(m+4)$	M1	or $\frac{3 m-4(m+4)}{m(m+4)}[=6]$ oe
	$3 m-4 m-16=6 m^{2}+24 m$	M1	removes brackets correctly
	$6 m^{2}+25 m+16=0$	A1	with no errors or omissions
5(d)(ii)	$\frac{-25 \pm \sqrt{(25)^{2}-4(6)(16)}}{2 \times 6}$ or $\frac{-25}{12} \pm \sqrt{\left(\frac{25}{12}\right)^{2}-\frac{16}{6}}$	2	B1 for $\sqrt{\left.(25)^{2}-4(6)(16)\right)}$ or better or $\mathbf{B 1}$ for $\left(m+\frac{25}{12}\right)^{2}$ and if in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ B1 for $p=-25$ and $r=2(6)$
	$-0.79 \text { and }-3.38$ final ans cao	2	B1 for each SC1 for -0.8 and -3.4 or for -0.78 and -3.37 or $-0.789 \ldots$ and $-3.377 \ldots$ or 0.79 and 3.38 or -0.79 and -3.38 seen in working
6(a)	4.79 or 4.788 to 4.789	3	M2 for $\sqrt[3]{\frac{230 \times 3}{2 \times \pi}}$ oe or M1 for $230=\frac{2}{3} \times \pi \times r^{3}$ oe If 0 scored $\mathbf{S C} 1$ for answer 3.8[0...]
6(b)(i)	$8.7[0]$ or 8.702 to 8.704	3	$\begin{aligned} & \text { M2 for }(300-230) \div\left(1.6^{2} \pi\right) \\ & \text { or M1 for } \pi \times 1.6^{2} \times h \end{aligned}$
6(b)(ii)	6.4	3	M2 for $1.6 \times \sqrt[3]{\frac{19200}{300}}$ oe or M1 for sf $\sqrt[3]{\frac{19200}{300}}$ or $\sqrt[3]{\frac{300}{19200}}$ oe or for $\left(\frac{1.6}{r}\right)^{3}=\frac{300}{19200}$

Question	Answer	Marks	Partial Marks
7(a)	$x=0$	1	
7(b)	Tangent ruled at $x=0.5$	B1	No daylight between tangent and curve at point of contact
	-9 to -6.5	2	dep on ruled tangent or close attempt at tangent at $x=0.5$ M1 for rise/run also dep on tangent or close attempt at tangent at $x=0.5$
7(c)(i)	$0 \quad 2.4$ or better 4	3	B1 for each
7(c)(ii)	Correct smooth curve	4	B3FT for 6 or 7 correct plots or B2 FT for 4 or 5 correct plots or B1 FT for 2 or 3 correct plots FT their table
7(d)	$x^{3}+3 x+4=10-8 x^{2}$ and correctly completed	1	
7(e)	line $y=-2 x+2$ drawn and -0.45 to -0.35 nfww	3	B2 for ruled $y=-2 x+2$ or B1 for $-2 x+2$ seen or for line $y=-2 x+c$ drawn or for $y=c x+2$ $(c \neq 0)$ drawn and B1 for -0.45 to -0.35 nfww
8(a)	18	3	B2 for 20 nfww or M1 for $8 x+x=180$ or better
8(b)	32	3	B1 for angle $D B C=58$ B1 for angle $B C D=90$
8(c)(i)	24	2	B1 for angle $P R Q=24$
8(c)(ii)	29.4 or 29.40 to 29.41	3	M2 for $\frac{360-48}{360} \times 2 \times \pi \times 5.4$ or $\mathbf{B 2}$ for answer (minor arc) 4.52 or 4.523 to $4.524 \ldots$ or M1 for $\frac{48}{360} \times 2 \times \pi \times 5.4$
9(a)	$\begin{array}{cc} \frac{5}{8} & \frac{3}{8} \\ \frac{1}{6} & \frac{5}{6} \\ \frac{7}{10} & \frac{3}{10} \end{array}$	3	B1 for each pair

Question	Answer	Marks	Partial Marks
9(b)	$\frac{5}{48} \mathrm{oe}$	2	M1FT for their $\frac{5}{8} \times$ their $\frac{1}{6}$
9(c)	$\frac{304}{480} \text { oe }$	3	M2 for their $\frac{5}{8} \times$ their $\frac{5}{6}+$ their $\frac{3}{8} \times$ their $\frac{3}{10}$ oe or M1 for their $\frac{5}{8} \times$ their $\frac{5}{6}$ or their $\frac{3}{8} \times$ their $\frac{3}{10}$
10(a)	75	3	M2 for $79.5 \div 1.06$ oe or M1 for 79.5 associated with 106 [\%]
10(b)	962.5 cao	2	B1 for 35 or 27.5 seen
10(c)(i)	16	1	
10(c)(ii)	50	1	
10(c)(iii)	$\frac{4}{50} \mathrm{oe}$	2	FT their (c)(ii) for 1 or 2 marks B1 for $\frac{4}{k}, k>4$ or $\frac{k}{\text { their } 50}, k<50$
10(c)(iv)	19	1	
11(a)(i)	12.6 or 12.64 to 12.65	3	M2 for $12^{2}+(-4)^{2}$ OR B1 for $\binom{12}{-4}$ M1 for $(\text { their } 12)^{2}+(\text { their }-4)^{2}$
11(a)(ii)	$\binom{-11}{13}$	2	B1 for $\binom{-11}{k}$ or $\binom{k}{13}$ or for $[\overrightarrow{B A}=]\binom{-8}{7}$
11(b)	$\frac{1}{2}(\mathbf{b}-\mathbf{a}) \text { oe }$	2	M1 for correct route or correct unsimplified answer or $\mathbf{B 1}$ for $\overrightarrow{Q S}=\mathbf{b}-\mathbf{a}$ oe
11(c)(i)	$\left(\begin{array}{cc}9 & 50 \\ 10 & 69\end{array}\right)$	2	B1 for 2 correct elements
11(c)(ii)	$\frac{1}{11}\left(\begin{array}{rr}8 & -5 \\ -1 & 2\end{array}\right)$ oe isw	2	B1 for $k\left(\begin{array}{rr}8 & -5 \\ -1 & 2\end{array}\right)$ or $\frac{1}{11}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ or det $=11$ soi

Question	Answer	Marks	Partial Marks
12(a)	$\begin{aligned} & 18 \\ & 28 \end{aligned}$	2	B1 for each
12(b)	$3 n+3$ oe	2	B1 for $3 n+k$ oe or $c n+3$ oe $c \neq 0$
12(c)	45	2	M1 for identifying 7th pattern or M1 for their $(3 n+3)=24$
12(d)	$[a=] \frac{3}{2} \text { oe }[b=] \frac{13}{3} \text { oe }$	6	M1 for any correct substitution e.g. $\frac{1}{6}(2)^{3}+2^{2} a+2 b$ A1 for one of e.g. $\begin{aligned} & \frac{1}{6}+a+b=6 \text { oe } \\ & \frac{8}{6}+4 a+2 b=16 \text { oe } \\ & \frac{27}{6}+9 a+3 b=31 \text { oe } \\ & \frac{64}{6}+16 a+4 b=52 \text { oe } \end{aligned}$ A1 for another of the above M1 for correctly eliminating one variable from their equations A1 for $a=\frac{3}{2}$ A1 for $b=\frac{13}{3}$ oe

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/42
Paper 4 (Extended)
May/June 2018
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only dep dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	85	1	
1(a)(ii)	455	2	M1 for $260 \div 20 \times 35$ oe
1(a)(iii)	61	3	B2 for $61.5 \ldots$ seen or M1 for $2000 \div 650$ soi or for $\frac{x}{2000}=\frac{20}{650}$ oe or other attempt at scaling up with 650 or for $650 \div 20$ oe
1(b)(i)	40	3	M2 for $\frac{1.89-1.35}{1.35}[\times 100]$ oe or $\frac{1.89}{1.35} \times 100$ oe or M1 for oe $\frac{1.89}{1.35}[\times 100]$ soi
1(b)(ii)	1.75 nfww	3	M2 for $1.89 \div\left(\frac{100+8}{100}\right)$ or better or M1 for 1.89 associated with 108 [\%]
1(c)	10.1 or $10.06 \ldots$	3	M2 for $\sqrt[3]{\frac{20.8}{15.6}}$ oe or M1 for $\quad 15.6 \times k^{3}=20.8 \mathrm{oe}$
1(d)(i)	14:15	3	B2 for correct unsimplified 3 term ratio A: B: C or correct unsimplified two term ratio A: C or M1 for attempt to find common multiple of 4 and 10 or other common value for B or for $7 \times \frac{4}{10}$ oe or $3 \times \frac{10}{4}$ oe

Question	Answer	Marks	Partial Marks
1(d)(ii)	147	3	$\begin{aligned} & \text { M2 for } \frac{45}{15}(14+20[+15]) \text { oe or } \\ & 45 \div 3 \times 4+(45 \div 3 \times 4) \div 10 \times 7[+45] \\ & \text { or M1 for } 45 \div 3 \text { oe } \\ & \text { or } 45 \div \text { their }(\mathbf{d})(\mathbf{i}) \text { value for C shown } \end{aligned}$
2(a)(i)	$20[<t \leqslant] 25$	1	
2(a)(ii)	$25[<t \leqslant] 30$	1	
2(a)(iii)	28.3 or 28.33..	4	M1 for $22.5,27.5,32.5,37.5,42.5$ soi M1 for $\sum f x$ where x is in the correct interval including boundaries $\begin{aligned} & \text { M1dep for } \sum f x \div 120 \text { or } \\ & \sum f x \div(44+32+28+12+4) \end{aligned}$
2(a)(iv)	$\frac{4}{120} \text { oe isw }$	1	
2(b)(i)	76, 104, 116, 120	2	B1 for one error FT other values or for 3 correct
2(b)(ii)	Correct curve	3	B1 for correct horizontal placement for 6 plots B1FT for correct vertical placement for 6 plots B1FT dep on at least B1 for reasonable increasing curve or polygon through their 6 points If 0 scored SC1FT for 5 out of 6 points correctly plotted
2(b)(iii)	27 to 27.5	1	
2(b)(iv)	8.5 to 9.5	2	B1 for [UQ=] 32 to 32.5 or [LQ=] 23 to 23.5
2(b)(v)	$8,9,10,11$ or 12	2	B1 for 108 to 112 seen or B1FT their graph reading at 37 mins seen
3(a)(i)	Image at ($3,-3$), (7, - 3), ($7,-5$)	2	B1 for reflection in any $x=k$ or if 3 correct points not joined
3(a)(ii)	Image at $(-5,1),(-1,1),(-5,-1)$	2	B1 for translation by $\binom{-2}{k}$ or $\binom{k}{4}$ or if 3 correct points not joined

Question	Answer	Marks	Partial Marks
3(a)(iii)	Image at (6, 3), (6, 4), (4, 3)	3	B2 for correct size and orientation but wrong position or if 3 correct points not joined B1 for enlargement SF $1 / 2$ with centre $(3,1)$
3(b)	Rotation 90° [anticlockwise]oe $(-6,-2)$	3	B1 for each
3(c)	Reflection $y=-x \mathrm{oe}$	2	B1 for each
4(a)(i)	$243 p^{10}$ final answer	2	B1 for answer $243 p^{k}$ or $k p^{10}(k \neq 0)$
4(a)(ii)	$9 x y^{4}$ final answer	2	B1 for answer with two correct elements in correct form of expression
4(a)(iii)	$\frac{m^{2}}{25}$ final answer	1	
4(b)	10	4	B2 for $x=8$ or for [length of rectangle $=$] 31 or M1 for $5 x-9=3 x+7$ oe or better M1 for $\frac{310}{(3 \times \text { their } x+7)}$ $\text { or } \frac{310}{(5 \times \text { their } x-9)}$ Alt method using simultaneous eqns M1 for $5 x w-9 w=310$ and $3 x w+7 w=310$ M1 for equating coefficients of $x w$ M1 for subtraction to eliminate term in $x w$
5(a)	$8^{2}+7^{2}-2 \times 7 \times 8 \times \cos 78$ oe	M2	M1 for correct implicit version
	9.471.. to 9.472	A2	A1 for 89.7...
5(b)	46.3 or 46.29 to 46.30...	3	M2 for $[\sin O A C=] \frac{7 \sin 78}{9.47}$ or M1 for $\frac{\sin O A C}{7}=\frac{\sin 78}{9.47}$

Question	Answer	Marks	Partial Marks
5(c)	$29.5-(7+8+9.47)$	M1	
	$\frac{360 \times(29.5-(7+8+9.47))}{2 \times \pi \times 7}$	M3	M2 for $\frac{x}{360} \times 2 \times \pi \times 7=$ their arc length oe or M1 for $\frac{x}{360} \times 2 \times \pi \times 7$ oe
	41.15 to 41.171..	B1	
5(d)	45 [.0] or 44.98 to 45.01 nfww	4	M3 for $1 / 2 \times 8 \times 7 \times \sin 78 \text { oe }+\frac{41.2}{360} \times \pi \times 7^{2} \mathrm{oe}$ OR M1 for $1 / 2 \times 8 \times 7 \times \sin 78$ oe or $1 / 2 \times 8 \times 9.47 \times \sin$ their (\mathbf{b}) oe M1 for $\frac{41.2}{360} \times \pi \times 7^{2}$ oe
6(a)	$-2[.0],-0.2,2.5$	3	B1 for each
6(b)	Fully correct curve	5	B4 for correct curve, but branches joined or B3FT for 9 or 10 correct plots or B2FT for 7 or 8 correct plots or B1FT for 5 or 6 correct plots and B1 indep two separate branches not touching or cutting y-axis
6(c)(i)	Correct tangent and $3 \leqslant \operatorname{grad} \leqslant 5$	3	B2 for close attempt at tangent to curve at $x=-2$ and answer in range OR B1 for ruled tangent at $x=-2$, no daylight at $x=-2$ and M1dep (dep on B1 or close attempt at tangent) [at $x=-2]$ for $\frac{\text { rise }}{\text { run }}$
6(c)(ii)	$[y=]$ their $(\mathbf{c})(\mathbf{i}) x+$ their y-intercept final answer	2	Strict FT their y-intercept for their line M1 for $y=$ their $(\mathbf{c})(\mathbf{i}) x+$ any value or ' c ' oe seen or for $y=$ any value(non-zero) x or ' $m x$ ' + their y-intercept seen oe
6(d)(i)	1.05 to 1.25	1	
6(d)(ii)	$\begin{array}{\|l} -2.3 \text { to }-2.2 \\ -0.4 \text { to }-0.3 \\ 0.3 \text { to } 0.4 \end{array}$	3	B1 for each After 0 scored B1 for $y=-4$ ruled

Question	Answer	Marks	Partial Marks
6(e)	$\begin{aligned} & {[a=] 2} \\ & {[b=] 24} \\ & {[n=] 5} \end{aligned}$	3	B2 for 2 correct or for $2 x^{5}+24 x^{2}[-3=0]$ or $\mathbf{B 1}$ for 1 correct or for $\frac{2 x^{5}-3+4\left(6 x^{2}\right)}{6 x^{2}}[=0] \mathrm{oe}$ If 0 scored $\mathbf{S C 1}$ for $2 x^{5}$ seen in final line of algebra
7(a)	$\begin{aligned} & x^{2}+(2 x-3)^{2}=6^{2} \text { oe } \\ & \text { or } x^{2}+4 x^{2}-6 x-6 x+9=36 \end{aligned}$	M1	
	$4 x^{2}-6 x-6 x+9$ or better	B1	
	$5 x^{2}-12 x-27=0$	A1	Dep on M1B1 with no errors or omissions
7(b)	$\frac{-(-12) \pm \sqrt{(-12)^{2}-4(5)(-27)}}{2 \times 5}$ or better or $\frac{12}{10} \pm \sqrt{\left(\frac{12}{10}\right)^{2}+\frac{27}{5}}$	B2	B1 for $\sqrt{(-12)^{2}-4(5)(-27)}$ or for $\left(x-\frac{12}{10}\right)^{2}$ oe or $\frac{-(-12)+\sqrt{q}}{2 \times 5}$ oe or $\frac{-(-12)-\sqrt{q}}{2 \times 5}$ oe or both
	- 1.42, 3.82 final answers	B2	B1 for each If $\mathbf{B 0}, \mathbf{S C 1}$ for answers -1.4 or $-1.415 \ldots$ to -1.415 and 3.8 or 3.815 to $3.815 \ldots$ or answers -1.41 and 3.81 or -1.42 and 3.82 seen in working or for -3.82 and 1.42 as final ans
7(c)	14.4 or 14.5 or 14.44 to 14.46	2	2FT for $3 \times$ their positive root +3 evaluated to 3 sf or better M1 for $3 \times$ their positive root +3 oe
7(d)	39.5 or 39.46 to $39.54 \ldots$	2	M1 for trig statement seen to find either angle $\sin =\frac{\text { their } x}{6} \text { oe or } \sin =\frac{\text { their }(2 x-3)}{6} \text { oe }$
8(a)(i)	1	2	M1 for $\mathrm{h}(0)$ or for $2^{8-3 x}$
8(a)(ii)	8	2	M1 for $\mathrm{g}(1 / 4)$ or for $\frac{10}{2^{x}+1}$

Question	Answer	Marks	Partial Marks
8(a)(iii)	$\frac{10-x}{x}$ or $\frac{10}{x}-1$ final answer	3	M2 for $x=\frac{10-y}{y}$ or better or $x y=10-x$ or better or $y+1=\frac{10}{x}$ or M1 for $x(y+1)=10$ or $y(x+1)=10$ or $x=\frac{10}{y+1}$ or $x+1=\frac{10}{y}$
8(a)(iv)	5	1	
8(b)	$\frac{-3 x^{2}+5 x+18}{x+1}$ final answer	3	M1 for $\frac{(8-3 x)(x+1)+10}{x+1}$ B1 for $-3 x^{2}-3 x+8 x+8[+10]$
9(a)(i)(a)	62 and Isosceles [triangle] and Angle at centre is twice angle at circumference oe	3	B2 for 62 and one correct reason or $\mathbf{B 1}$ for 62 with no/wrong reason or for angle $E O D=124$ soi or for no/wrong angle with correct reason
9(a)(i)(b)	62 and [Angles in] same segment oe or angle at centre is twice angle at circumference oe	2	2FT their (a)(i)(a) and correct reason B1FT for their (a)(i)(a) with no/wrong reason or for no/wrong angle with correct reason
9(a)(ii)	8	3	M2 for ($180-109$) $-28-35$ oe or M1 for [angle $A E D=$] 180-109 oe
9(b)(i)	24	3	$x=$ ext angle B2 for $[x=$] 15 isw or M1 for $x+11 x=180$ oe or for $\frac{180(n-2)}{[n]}=\frac{360}{[n]} \times 11$
9(b)(ii)	3960	2	FT (their $24-2) \times 180$ dep on (b)(i) an integer and >6 M1 for (their $24-2) \times 180$ oe or their $24 \times 11 \times$ their 15 oe or 11×360

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/43
Paper 4 (Extended)
May/June 2018
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE ${ }^{\text {TM }}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	13.5	3	$\begin{aligned} & \text { M2 for } \frac{45.4[0]-40}{40}[\times 100] \text { or } \frac{45.4[0]}{40} \times 100 \\ & \text { or M1 for } \frac{45.4[0]}{40}[\times 100] \end{aligned}$
1(a)(ii)	35.5[0]	3	M2 for $42.6[0] \div\left(1+\frac{20}{100}\right)$ or better or M1 for recognising 42.6[0] as 120[\%]
1(b)	150 cao	2	M1 for $\frac{500 \times 2 \times 15}{100}$ oe
1(c)(i)	7800 cao	3	B2 for 7790 or 7785 to 7786 or M1 for $21000 \times\left(1-\frac{18}{100}\right)^{5}$ oe isw If 0 or 1 scored, SC1 for their $7785 \ldots$ seen and rounded correctly to nearest 100
1(c)(ii)	9[.00...]	3	M2 for $\sqrt[12]{\frac{42190}{15000}}$ or better or M1 for $15000\left(1+\frac{x}{100}\right)^{12}=[42190]$
2(a)(i)	$1, \ldots \ldots, \ldots . ., \ldots, 16$	2	B1 for each
2(a)(ii)	$14, \ldots \ldots, \ldots \ldots, \ldots,-2$	2	B1 for each
2(b)	Fully correct smooth curves	6	B3 for correct curve of $y=2^{x}$ or B2FT for 4 or 5 correct points or B1FT for 2 or 3 correct points B3 for correct curve of $y=14-x^{2}$ or B2FT for 4 or 5 correct points or B1FT for 2 or 3 correct points
2(c)(i)	3.5 to 3.7	1	
2(c)(ii)	2.65 to 2.8	1	

Question	Answer	Marks	Partial Marks
2(d)(i)	Correct line	1	Ruled, through (4, 2) and gradient -4
2(d)(ii)	$\begin{aligned} & \text { Tangent } \\ & (2,10) \end{aligned}$	2	B1 for each
3(a)(i)	Positive	1	Ignore strong, weak, etc.
3(a)(ii)	Correct ruled line	1	
3(a)(iii)	2	1	
3(b)	$\begin{aligned} & {[\text { mode }=] 0} \\ & {[\text { median }=] 1} \\ & {[\text { mean }=] 1.04 \text { or } 1.041 \text { to } 1.042} \end{aligned}$	5	B1 B1 B3 or M2 for $\begin{aligned} & ([10 \times 0]+8 \times 1+3 \times 2+2 \times 3+[0 \times 4]+1 \times 5) \\ & \div 24 \text { oe } \end{aligned}$ or M1 for $[10 \times 0]+8 \times 1+3 \times 2+2 \times 3+[0 \times 4]+1 \times 5$ oe
3(c)(i)	60.9 or 60.91... nfww	4	M1 for 49, 57, 71 correct M1 for use of $\Sigma f x$ with x in the correct interval including both boundaries M1 (dep on 2 nd M1) for their $(78 \times 49+180 \times 57+162 \times 71) \div(78+180+162)$
3(c)(ii)	Correct histogram	4	B1 for correct widths in correct position B1 height 13 B1 height 18 B1 height 9 If 0 scored $\mathbf{B 1}$ for 13, 18 and 9 seen
4(a)(i)	$\frac{8}{20} \text { oe }$	3	M2 for $\frac{2}{5} \times \frac{1}{4}+\frac{3}{5} \times \frac{2}{4}$ or M1 for one of these products OR M1 for probability tree identifying all 20 outcomes with the correct 8 identified OR M1 for completed possibility space / 2-way table identifying the 8 possible outcomes out of 20 , oe SC1 for $\frac{13}{25}$ with replacement

Question	Answer	Marks	Partial Marks
4(a)(ii)	$\frac{9}{25} \text { oe }$	3	M2 for $\frac{2}{5} \times \frac{3}{5}+\frac{3}{5} \times \frac{1}{5}$ oe or M1 for one of these products OR M1 for probability tree identifying all 25 outcomes with the correct 9 identified OR M1 for completed possibility space / 2-way table identifying the 9 possible outcomes out of 25 , oe
4(a)(iii)	Jojo and e.g. $\frac{40}{100}>\frac{36}{100}$	1	1FT their (i) and (ii) dep on being in range 0 to 1
4(b)	$\frac{24}{60} \text { oe }$	3	M2 for $\frac{2}{5} \times \frac{3}{4} \times \frac{1}{3}+\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3}+\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3}$ oe or M1 for any one correct product OR M1 for 4, 5, 4 and 5, 4, 4 and 5, 5, 4 clearly identified on a tree or in a list
5(a)	15.6[0]	4	B3 for $20900 x=326040$ or better or M2 for $18500 x+2400(x-2.5[0])=320040$ or M1 for $18500 x$ or $2400(x-2.5[0])$
5(b)(i)	$(y+12)(y-7)$ final answer	2	B1 for $(y+a)(y+b)$ where $a b=-84$ or $a+b=5$ or $y(y+12)-7(y+12)$ or $\quad y(y-7)+12(y-7)$
5(b)(ii)	38 cao	3	B2 for $y=7$ or M1 for $y(y+5)=84$ oe
5(c)(i)	$168(m-0.75)+207 m=100 m(m-0.75)$ oe OR $207=100 m-168-75+\frac{126}{m}$	M2	May be all over common denominator M1 for $\frac{168}{m}$ or $\frac{207}{m-0.75}$ used
	at least one interim line leading to $50 m^{2}-225 m+63=0$	A1	No errors or omissions

Question	Answer	Marks	Partial Marks
5(c)(ii)	$(10 m-3)(5 m-21)$ OR $m=\frac{-(-225) \pm \sqrt{(-225)^{2}-4(50)(63)}}{2(50)} \text { oe }$ OR $m=\frac{225}{100} \pm \sqrt{\left(\frac{225}{100}\right)^{2}-\frac{63}{50}}$ oe	B2	M1 for $(10 m+a)(5 m+b)$ where $a b=63$ or $5 a+10 b=-225$ or $10 m(5 m-21)-3(5 m-21)$ or $5 m(10 m-3)-21(10 m-3)$ OR M1 for $\sqrt{(-225)^{2}-4(50)(63)}$ or for $p=-(-225)$, $r=2(50)$ if in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ OR M1 for $\left(m-\frac{225}{100}\right)^{2}$ oe
	4.2[0] cao	B1	
6(a)(i)	116.6 or 116.56 to 116.57	4	M1 for $\sin [E A D]=\frac{6}{12}$ oe M1 for $\tan [B A C]=\frac{6}{12}$ oe $\mathbf{B 1}$ for [angle $D A C$] $=60$
6(a)(ii)	13.4 or 13.41 to 13.42	2	M1 for $12^{2}+6^{2}$
6(a)(iii)	10.4 or $10.39 \ldots$	3	M2 for $\sqrt{12^{2}-6^{2}}$ or M1 for $A E^{2}+6^{2}=12^{2}$
6(a)(iv)	130 or $129.5 \ldots$ to 129.6	4	M1 for $0.5 \times 6 \times$ theirAE oe M1 for $0.5 \times 12 \times 12 \times \sin 60$ oe M1 for $0.5 \times 6 \times 12$ oe
6(b)(i)	3	1	
6(b)(ii)	51.3 or 51.30 to $51.34 \ldots$	4	M3 for $\tan =\frac{8}{\sqrt{4^{2}+5^{2}}}$ or $\sin =\frac{8}{\sqrt{4^{2}+5^{2}+8^{2}}}$ oe or M2 for $\sqrt{4^{2}+5^{2}}$ or $\sqrt{4^{2}+5^{2}+8^{2}}$ or M1 for angle $A R B$ clearly indicated
7(a)	204 or 203.5 to 203.6... nfww	4	M2 for $\pi \times 1.5^{2} \times 8 \times 60 \times 60$ or M1 for $\pi \times 1.5^{2}$ M1 for dividing their volume by 1000 If 0 scored SC1 for an answer figs 204 or figs 2035 to 2036 without working
7(b)(i)	$\pi \times 6 \times 12+\pi \times 6^{2}=108 \pi$	M2	M1 for $\pi \times 6 \times 12$

Question	Answer	Marks	Partial Marks
7(b)(ii)	$[x=] 5.2[0] \text { or } 5.196 \ldots$ $[y=] 6$	4	B2 or M1 for $4 \pi x^{2}=108 \pi$ seen B2 or M1 for $1 / 2\left(4 \pi y^{2}\right)+\pi y^{2}$ or better seen
8(a)(i)	$\begin{aligned} & \times \\ & \stackrel{x}{v} \\ & v \\ & \times \\ & \times \\ & v \end{aligned}$	4	B3 for 5 correct B2 for 4 correct B1 for 3 correct
8(a)(ii)	$\binom{5}{3}$	1	Fraction line and/or missing brackets scores 0
8(a)(iii)	$\left(\begin{array}{ll}4 & 8 \\ 1 & 2\end{array}\right)$	2	B1 for 2 or 3 correct elements (dep on 2×2 matrix)
8(a)(iv)	$\frac{1}{2}\left(\begin{array}{rr}3 & -1 \\ -4 & 2\end{array}\right)$ oe isw	2	B1 for $k\left(\begin{array}{rr}3 & -1 \\ -4 & 2\end{array}\right)$ or determinant $=2$ soi
8(b)	Rotation Origin oe 90 [anticlockwise] oe	3	B1 for each
9(a)	$y=-2 x+5$ oe	3	B2 for $-2 x+5$ or M1 for gradient $=-1 \div \frac{1}{2}$ or better M1 for substituting $(1,3)$ into $y=($ their $m) x+c$ oe If 0 scored $\mathbf{S C 1}$ for $(1,3)$ satisfying their wrong equation $(c \neq 0)$ with gradient $\neq \frac{1}{2}$
9(b)(i)	$x \geqslant 2 \quad$ oe $y \leqslant 5 \quad$ oe $y \geqslant \frac{1}{2} x$ oe	4	SC3 for $x>2$ and $y<5$ and $y>\frac{1}{2} x$ OR B1 for $x \geqslant 2$ B1 for $y \leqslant 5$ B2 for $y \geqslant \frac{1}{2} x$ or M1 for $y \geqslant k x(k>0)$ OR SC2 for all three boundary lines identified but with incorrect sign(s) If 0 scored SC1 for one or two correct boundary lines with incorrect $\operatorname{sign}(\mathrm{s})$

Question	Answer	Marks	Partial Marks
9(b)(ii)	$(5,4)$	$\mathbf{2}$	M1 for one trial of an integer point inside region or for $3 x+5 y=35$ drawn
10(a)(i)	26	$\mathbf{2}$	M1 for $\mathrm{g}(5)$ or for $\left(x^{2}+1\right)^{2}+1$
10(a)(ii)	$x^{2}+4 x+5$	$\mathbf{2}$	M1 for $(x+2)^{2}+1$
10(a)(iii)	5	$\mathbf{2}$	M1 for $2 x-3=7$
$10($ a)(iv)	$\frac{x+3}{2}$ oe	$\mathbf{2}$	M1 for $x=2 y-3$ or $y+3=2 x$ or $\frac{y}{2}=x-\frac{3}{2}$ oe
10(b)(i)	$[0] .70$ cao	$\mathbf{2}$	B1 for $[0] .696$ to $[0] .697$
10(b)(ii)	4 cao	$\mathbf{1}$	

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/42
Paper 42 (Extended)
March 2018
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the March 2018 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:
Marks awarded are always whole marks (not half marks, or other fractions).
GENERIC MARKING PRINCIPLE 3:
Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:
Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Abbreviations

cao	correct answer only dep dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	23.27 final answer	2	M1 for 9×2.97 soi
1(a)(ii)	2.75 final answer	3	M2 for $2.97 \div \frac{108}{100}$ oe or M1 for 108[\%] associated with 2.97 oe
1(b)	$12.4[0]$ or 12.41 to 12.42	2	M1 for $35 \div 0.0153$ oe If 0 scored, SC1 for answer 0.19
1(c)	70 nfww	3	M2 for $(600+2.5) \div(9-0.5)$ or $\mathbf{B 1}$ for one of $600+2.5$ or $9-0.5$ seen
2(a)	128	2	M1 for $4 \times \frac{1}{2} \times 8 \times 8$ oe
2(b)(i)	18.3 or 18.26 to $18.29 \ldots$	3	M2 for $\frac{1}{4}\left(\pi \times 8^{2}-\right.$ their 128$)$ oe or M1 for $\pi \times 8^{2}-$ their 128 oe or for $\frac{1}{4} \times \pi \times 8^{2}$ oe OR SC2dep for answer 4.56 to 4.57 ...
2(b)(ii)	23.9 or 23.87 to 23.882	4	M3 for $\frac{90}{360} \times 2 \times \pi \times 8+\sqrt{8^{2}+8^{2}}$ oe OR M1 for $\frac{90}{360} \times 2 \times \pi \times 8$ oe M1 for $\sqrt{128}$ oe OR SC3dep for answer 11.9 or 11.93 to $11.94 \ldots$
3(a)	$0-0.17 \quad 2.4$	3	B1 for each
3(b)	Fully correct smooth curve	4	B3FT for 9 or 10 correct points or B2FT for 7 or 8 correct points or B1FT for 5 or 6 correct points
3(c)	$\begin{aligned} & x \leqslant 0.17 \text { to } 0.25 \\ & \text { and } x \geqslant 2.25 \text { to } 2.3 \end{aligned}$	3	B2 for strict inequalities or one correct or B1 for 0.17 to 0.25 and 2.25 to 2.3 seen

PUBLISHED

Question	Answer	Marks	Partial Marks
3(d)(i)	$y=4-x$ oe final answer	2	B1 for 4-x or $y=k-x$ or $y=4+k x$ oe
3(d)(ii)	correct ruled line	1	FT if in form $y=m x+c$ oe $(m, c \neq 0)$
	0.125 to 0.2 and 2.15 to 2.2	2	B1 for each
4(a)	$[\pm] \sqrt{k-s}$ final answer	2	M1 for $t^{2}=k-s$
4(b)(i)	$(x-5)(x+5)$ final answer	1	
4(b)(ii)	$\frac{x-5}{x-7}$ nfww final answer	3	M2 for $(x-7)(x+5)$ or M1 for $x(x+5)-7(x+5)$ or $x(x-7)+5(x-7)$ or $(x+a)(x+b)$ where $a+b=-2$ or $a b=-35$
4(c)	$\frac{4 x^{2}-7 x-8}{x(x+1)}$ or $\frac{4 x^{2}-7 x-8}{x^{2}+x}$ final answer	3	M1 for $(x-8)(x+1)+3 x \times x$ oe isw B1 for common denominator $x(x+1)$ oe isw
4(d)	3, 4, 5, 6 nfww	3	B2 for 3 correct or 4 correct and 1 extra or M2 for $n>\frac{18}{8}$ oe and $n \leqslant 6$ or M1 for $18<8 n[\leqslant 30+3 n$] or $[18-3 n<] 5 n \leqslant 30$ seen
5(a)(i)	1930 or 1940 or 1933.4 to 1935.3	5	B1 for interior angle 120 soi or angle at centre 60 soi or for correct use of Pythagoras' with 7 and 3.5 or with 14 and 7 M3 for $6 \times \frac{1}{2} \times 7^{2} \times \sin 60 \times 15.2$ oe or complete other methods or M2 for $6 \times \frac{1}{2} \times 7^{2} \times \sin 60$ oe OR M1 for $\frac{1}{2} \times 7^{2} \times \sin 60$ oe or other partial area of hexagon M1dep for their area $\times 15.2$ evaluated

Question	Answer	Marks	Partial Marks
5(a)(ii)	893 or 892.8 to $893.0 \ldots$	3	M2 for $6 \times 7 \times 15.2+2 \times 6 \times \frac{1}{2} \times 7^{2} \times \sin 60$ oe or for $6 \times 7 \times 15.2+2 \times$ their area of hexagon from (a) oe or M1 for [6 \times] 7×15.2 oe or $2 \times$ their area of hexagon from (a) oe
5(b)	2.71 or 2.709 to 2.710	3	M2 for $\sqrt[3]{500 \div\left(6 \times \frac{4}{3} \pi\right)}$ oe or M1 for $500=6 \times \frac{4}{3} \pi r^{3}$ oe If 0 scored, $\mathbf{S C 1}$ for answer 4.92 or 4.923 to 4.924
6(a)	$y>x$	1	
	$x \geqslant 15$	1	
	$y<50$	1	
	$x+y \leqslant 70$	1	
6(b)	Four correct ruled lines and correct region indicated	5	all lines ruled B1 for $y=x$ broken B1 for $x=15$ B1 for $y=50$ broken B1 for $x+y=70$
6(c)	189	2	M1 for $(21,49)$ seen or for $2 x+3 y$ written for a point (x, y) in their region where x and y are integers
7(a)(i)	$\frac{9}{160} \text { oe }$	O	
7(a)(ii)	58.125 nfww	4	M1 for mid-points soi M1 for use of $\Sigma f x$ with x in correct interval including both boundaries M1 (dep on 2 nd M1) for $\Sigma f x \div 160$
7(b)	[3 42] $85 \begin{array}{llllll}140 & 151 & 160\end{array}$	2	B1 for 1 error $\mathbf{F T}$ other values

Question	Answer	Marks	Partial Marks
7(c)	correct curve	3	B1FT their (b) for 6 correct heights B1 for 6 points at upper ends of intervals on correct vertical line B1FT dep on at least B1 for increasing curve through their 6 points After 0 scored, SC1 for their 5 correct points plotted
7(d)(i)	57 to 59	1	
7(d)(ii)	36 to 42	2	B1 for $\mathrm{UQ}=76$ to 80 or $\mathrm{LQ}=38$ to 40 soi
7(d)(iii)	92 to 94	2	B1 for 144 seen
7(d)(iv)	130 to 137	2	B1 for 23 to 30 seen
8(a)	356 or 356.2 to 356.3	4	B1 for [Angle $L P M$] $=74$ soi M2 for $\frac{248 \times \sin \text { their } 74}{\sin 42}$ oe or M1 for implicit statement
8(b)(i)	320 or 319.9 to $320.2 \ldots$	3	B1 for angle $P L M=64$ soi or for angle between $L M$ and perpendicular from $M=26$ soi or $[P M=$] 333.[1...] M1 for their $356 \times \sin$ their 64 oe or their $356 \times \cos$ their 26 oe
8(b)(ii)	0257 or 257 am	3	B2 for 6 hours 12 mins or 372 mins seen or M1 for $248 \div 40$ oe If 0 scored, SC1 for their time in hours converted to hours and minutes
9(a)	7.07 or 7.071...	2	M1 for $(-1)^{2}+7^{2}$ oe
9(b)	-6	2	M1 for $6 \times m-5 \times 2 m$ [$=24]$
9(c)(i)	(10) final answer	2	B1 for answer 10 without brackets
9(c)(ii)	$\binom{2}{6}$ final answer	2	M1 for $\binom{2}{k}$ or $\binom{k}{6}$
9(c)(iii)	$\left(\begin{array}{ll}19 & 55 \\ 33 & 96\end{array}\right)$ final answer	2	M1 for 2 or 3 correct elements
9(c)(iv)	$\frac{1}{3}\left(\begin{array}{cc}9 & -5 \\ -3 & 2\end{array}\right)$ oe isw	2	B1 for $k\left(\begin{array}{cc}9 & -5 \\ -3 & 2\end{array}\right)$ soi or det $=3$ soi

Question	Answer	Marks	Partial Marks
10(a)	10.8 or 10.81 to 10.82	3	M2 for $\sqrt{(6--3)^{2}+(-2-4)^{2}}$ oe or M1 for $(6--3)^{2}+(-2-4)^{2}$ oe
10(b)(i)	$(6,4)$	2	B1 for each
10(b)(ii)	2	2	M1 for $\frac{12-(-4)}{10-2}$ oe
10(b)(iii)	$y=-\frac{1}{2} x+4$ oe final answer	3	$\mathbf{M 1} \text { for gradient }=-\frac{1}{2} \text { or }-\frac{1}{\text { their }(\mathbf{b})(\mathbf{i i)}}$ M1 for (2,3) substituted into their $y=m x+c$ or $y-y_{1}=m\left(x-x_{1}\right) \mathrm{oe}$
11(a)	25916	3	B1 for each
11(b)(i)	$(n-1)^{2}$ oe	2	B1 for any quadratic of form $[1] n^{2}[+b n+c]$
11(b)(ii)	$n+3$ oe	1	
11(c)	25	2	M1 for their $(n-1)^{2}=576$
11(d)(i)	$n^{2}-3 n-2$ final answer	3	M1 for their $(n-1)^{2}-\operatorname{their}(n+3)$ oe or 2 nd diff $=2$ soi B1 for $n^{2}-n-n+1$ or better or $-n-3$ or for expression of form $n^{2}-2 n-n+k$ or correct expression not in simplest form
11(d)(ii)	808 cao	2	M1 for substituting 30 in their (d)(i)

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

MATHEMATICS
 0580/42

Paper 4 (Extended)
October/November 2017
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Abbreviations

cao	correct answer only dep dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial marks
1(a)(i)	4:5	1	
1(a)(ii)	4:5	1	
1(a)(iii)	3:4	2	B1 for 12:16 or answer 4:3
1(b)(i)	26.8 or 26.79...	3	$\begin{aligned} & \text { M2 for } \frac{15600-11420}{15600}[\times 100] \text { or } \frac{11420}{15600} \times 100 \\ & \text { or M1 for } \frac{11420}{15600} \end{aligned}$
1(b)(ii)	16000 nfww	3	M2 for $15600 \times \frac{100}{100-2.5}$ oe or M1 for 15600 associated with $97.5[\%]$ seen
1(c)	$1.6 \text { or } \frac{8}{5}$	2	M1 for $\frac{200 \times x \times 15}{100}=48$ oe or M1 for figs 16
1(d)	2.5 or $\frac{5}{2}$ cao nfww	3	B2 for $2.49[9 \ldots]$ or $102.4[99 \ldots]$ or $1.024[99 \ldots]$ or 2.50 or 102.5 or 1.025 or M2 for $\sqrt[10]{\frac{256}{200}}$ oe or M1 for $256=200(x)^{10}$ seen

Question	Answer	Marks	Partial marks
2(a)(i)	1070 or 1072. ..	3	M1 for $\pi \times 8^{2} \times 2 \times 8$ M1 for $\frac{4}{3} \times \pi \times 8^{3}$ or M2 for $\frac{2}{3} \pi r^{3}$ or M1 for $\pi r^{2} 2 r-\frac{4}{3} \pi r^{3}$
2(a)(ii)	2.58 or 2.580 to 2.581	3	B2 for $r^{3}=\frac{36 \times 3}{2 \pi}$ or better or M1 for $\pi \times r^{2} \times 2 \times r-\frac{4}{3} \times \pi \times r^{3}=36$ oe
2(b)(i)	4.24 or 4.241 to 4.242	4	M3 for $\left(\pi \times 5^{2}+\pi \times 5 \times \sqrt{5^{2}+12^{2}}\right)$ or M2 for $\pi \times 5 \times \sqrt{5^{2}+12^{2}}$ or M1 for $5^{2}+12^{2}$ or $\pi \times 5^{2}$
2(b)(ii)	64 cao final answer		M2 for $\frac{[k \pi] \times 5^{2} \times 12}{[k \pi] \times 1.25^{2} \times 3}$ or M1 for $\frac{1}{3} \times \pi \times 5^{2} \times 12$ or $\frac{1}{3} \times \pi \times 1.25^{2} \times 3$ OR M2 for 4^{3} or $\left(\frac{1}{4}\right)^{3}$ seen or M1 for factor 4 or $\frac{1}{4}$ soi
3(a)	7040 or 7035...		M1 for $\frac{1}{2} \times 100 \times 70$ oe M1 for $\frac{1}{2} \times 100 \times 110 \times \sin 40$ oe
3(b)	374 or 375 or 374.4 to $374.5 \ldots$	5	M2 for $110^{2}+100^{2}-2 \times 110 \times 100 \times \cos 40$ oe or M1 for implicit form A1 for 5250 or 5247. ... (or 72.4 or 72.43 to 72.44) $\mathbf{M 1}$ for $70^{2}+100^{2}$
3(c)	64.3 or 64.27 to 64.28 nfww	2	M1 for $\sin 40=\frac{\text { distance }}{100}$ oe
3(d)	235	3	B2 for [angle $A C B=$] 34.99 to 35 or [angle $A B C=$] 55[.0...] or M1 for $\tan [A C B]=\frac{70}{100}$ or $\tan [A B C]=\frac{100}{70}$ or equivalent trig ratio

Question	Answer	Marks	Partial marks
4(a)(i)	Correct translation	2	B1 for translation $\binom{6}{k}$ or $\binom{k}{-2}$
4(a)(ii)	Correct rotation	2	B1 for rotation 180° but other centre
4(a)(iii)	Correct reflection	2	B1 for reflection in $y=-x$
4(b)(i)	Enlargement [factor] $\frac{1}{2}$ or 0.5 [centre] $(0,0)$ oe	3	B1 for each
4(b)(ii)	$\left(\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & \frac{1}{2}\end{array}\right)$ oe	2	B1 for matrix of form $\left(\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right)$ oe, $k \neq 0$ or 1
4(c)	± 2.5	3	B2 for $25 u^{2}=156.25$ or $5 u=[\pm] 12.5$ or M1 for $(4 u)^{2}+(3 u)^{2}$
5(a)	3.2 or 3.15 or 3.152 to 3.153 5.2 or 5.19 or 5.20 or 5.196..	2	B1 for each
5(b)	Correct graph for $0.5 \leqslant x \leqslant 3.5$	4	B3FT for 6 or 7 correct points or B2FT for 4 or 5 correct points or B1FT for 2 or 3 correct points
5(c)	1.7 to 1.8	1FT	FT their graph if one answer
5(d)(i)	Any integer $k \geqslant-1$	1	
5(d)(ii)	Any integer $k<-1$	1	
5(e)	Tangent ruled at $x=-3$	B1	
	2.5 to 4	B2	dep on tangent drawn at $x=-3$ or close attempt at tangent at $x=-3$ M1 for rise/run also dep on tangent at $x=-3$ or close attempt at tangent at $x=-3$

Question	Answer	Marks	Partial marks
5(f)(i)	$y=6-x$ ruled accurately	M2	M1 for correct line but freehand or ruled line gradient -1.1 to -0.9 , or through $(0,6)$ but not $y=6$
	$2.85 \leqslant x \leqslant 3$	A1	
5(f)(ii)	$\begin{aligned} & {[a=] 8} \\ & {[b=]-48} \\ & {[c=]-16} \end{aligned}$	4	B3 for 2 correct or $x^{5}+8 x^{3}-48 x^{2}-16=0$ seen or $-x^{5}-8 x^{3}+48 x^{2}+16=0$ seen or M2 for correct multiplication by $8 x^{2}$ or B1 for answers $\pm 8, \pm 48, \pm 16$ or M1 for $\frac{x^{2} \times x^{3}-8 \times 2}{x^{2} \times 8}=6-x$ or M1 for correct multiplication by 8 or M1 for correct multiplication by x^{2}
6(a)(i)	280	1	
6(a)(ii)	320	1	
6(a)(iii)	90	1	
6(a)(iv)	10	2	M1 for 90 written
6(b)(i)	250.2 nfww cao	4	M1 for at least 4 correct mid-values M1 for $\Sigma f x$ M1 dep on second M1 for $\Sigma f x \div 100$
6(b)(ii)	Correct completion of histogram	4	B1 for each correct block If zero scored, then SC1 for correct frequency densities seen
6(c)	[22 m] further oe	1	
7(a)	$\frac{5}{6}$	1	
7(b)	$\frac{4}{36} \text { oe }$	2	M1 for $\frac{2}{6} \times \frac{2}{6}$
7(c)	20	1	

Question	Answer	Marks	Partial marks
7(d)(i)	Diagram completed correctly $\begin{aligned} & \mathrm{x} x 3339 \\ & \mathrm{x} x 2226 \\ & \mathrm{x} x 2226 \\ & \mathrm{x} x 2226 \\ & \mathrm{x} x \end{aligned}$	2	B1 for 3 correct columns or for 4 correct rows
7(d)(ii)(a)	$\frac{9}{36} \text { oe }$	1FT	FT their (d)(i)
7(d)(ii)(b)	$\frac{4}{36} \mathrm{oe}$	1FT	FT their (d)(i)
7(e)	$\frac{512}{7776} \text { oe }$		M1 for $\left(\frac{4}{6}\right)^{k} \times \frac{2}{6}$ oe $\quad k=3,4$ or 5 only
8(a)(i)	$7 a+9 p=354$ oe final answer	1	
8(a)(ii)	$\begin{aligned} & {[a=] 21} \\ & {[p=] 23} \end{aligned}$	3	M1 for correctly eliminating one variable A1 for $a=21$ A1 for $p=23$
8(b)(i)	$\frac{2}{x}$	1	
8(b)(ii)(a)	$\frac{2}{x}+\frac{3}{x-1}=2$	M1	
	$2(x-1)+3 x=2 x(x-1)$ oe	M1dep	Both sides of the equation could be over $x(x-1)$ at this stage Dep on M1 or 3 term equation with fractions but one sign error
	$\begin{aligned} & 2 x-2+3 x=2 x^{2}-2 x \text { oe } \\ & 2 x^{2}-7 x+2=0 \end{aligned}$	A1	Answer reached with one correctly expanded line seen and no errors seen
8(b)(ii)(b)	$\sqrt{(-7)^{2}-4(2)(2)}$	B1	or for $\left(x-\frac{7}{4}\right)^{2}$
	$\frac{--7+\sqrt{q}}{2 \times 2} \text { or } \frac{--7-\sqrt{q}}{2 \times 2}$	B1	or for $\frac{7}{4}+$ or $-\sqrt{-1+\left(\frac{7}{4}\right)^{2}}$
	3.19 only	B2	B1 for 3.19 with other root or for 3.2 or 3.186... isw other root or for 0.31 or 0.314 or 0.3138 to 0.3139

Question	Answer	Marks	Partial marks
9(a)	3	1	
9(b)	$-\frac{2}{5} \text { oe }$	2	M1 for $2(1-2 x)=x+4$
9(c)	$-2 x-7$ final answer	2	M1 for $1-2(x+4)$
9(d)	26	2	B1 for h(5) soi or M1 for $\left(x^{2}+1\right)^{2}+1$
9(e)	$\frac{1-x}{2}$ oe final answer	2	M1 for $x=1-2 y$ or $2 x=1-y$ or $\frac{y}{2}=\frac{1}{2}-x$ or $y-1=-2 x$
9(f)	$\begin{aligned} & {[p=]-20} \\ & {[q=] 26} \end{aligned}$	4	B3 for $[\operatorname{hgf}(x)]=4 x^{2}-20 x+26$ seen and not spoilt by further working or M1 for $(1-2 x)+4$ M1 dep for $(\text { their }(5-2 x))^{2}+1$ B1FT dep for $25-10 x-10 x+4 x^{2}$
10(a)	5.68 or 5.684 to 5.685	5	M2 for $2 x \sqrt{x^{2}+x^{2}}$ oe or $2 \times \sqrt{2} \times x^{2}$ or M1 for $x \sqrt{2}$ or $\sqrt{x^{2}+x^{2}}$ oe soi M1 for $\frac{270}{360} \times \pi \times x^{2}$ oe M1 for $0.5 x^{2}$ oe
10(b)	4.4 [0] or 4.398 to 4.401	2	dep on a correct value for k in (a) M1 for $\left[x^{2}\right]=\frac{110}{\text { their } k}$

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

MATHEMATICS
 0580/43

Paper 4 (Extended)
October/November 2017
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	$180 \div(2+3+5) \times 5[=90]$	1	with no errors seen
1(a)(ii)	7.05 or 7.053...	3	M2 for $\frac{x}{12}=\sin 36$ oe or better or B1 for 36 or 54 seen
1(b)(i)	13	2	M1 for $7.8 \div 3$ soi
1(b)(ii)	36.9 or 36.86 to 36.87	3	B1 for smallest angle identified M1 for $\sin []=\frac{3}{5}$ oe or $\sin []=\frac{7.8}{\text { their }(\mathbf{b})(\mathbf{i})}$ oe If zero scored, $\mathbf{S C 1}$ for calculation of 53.1
2(a)	343	1	
2(b)(i)	1	1	
2(b)(ii)	x^{10} final answer	1	
2(b)(iii)	$9 x^{16}$ final answer	2	B1 for x^{12} or x^{16} or $\left(3 x^{8}\right)^{2}$ seen
2(c)(i)	$2(x-3)(x+3)$ final answer	2	$\begin{aligned} & \text { M1 for }(2 x+6)(x-3) \text { or }(2 x-6)(x+3) \\ & \text { or }(x-3)(x+3) \end{aligned}$
2(c)(ii)	$\frac{2(x+3)}{x+10} \text { or } \frac{2 x+6}{x+10}$ final answer nfww	3	M2 for $(x+10)(x-3)$ or M1 for $(x+a)(x+b)$ where $a b=-30$ or $a+b=7$

Question	Answer	Marks	Partial Marks
3(a)(i)	1890	2	M1 for $126 \div 4[\times 60]$ oe If zero scored, SC1 for answer 31.5
3(a)(ii)	103.95	4	M3 for $0.5 \times\left(\frac{44}{60}+\frac{55}{60}\right) \times 126$ oe or SC3 for figs 10395 or figs 104 or M2 for two correct area methods or for a full method without minutes to hours conversion or M1 for one correct area with or without minutes to hours conversion
3(b)(i)	$126 \times 1000 \div(60 \times 60)$	1	
3(b)(ii)	46.3 or 46.28 to 46.29	- 3	M2 for $(1400+220) \div 35$ oe or M1 for distance \div speed or $1400+220$
3(c)	180 nfww	4	B3 for final answer 3 OR M3 for $\frac{217.5}{72.5} \times 60$ oe or M2 for $217.5 \div 72.5$ oe or $\frac{210 \text { to } 220}{72.5} \times 60$ or $\frac{217.5}{72 \text { to } 74} \times 60$ or M1 for 217.5 or 72.5 seen or $\frac{215}{73} \times 60$
4(a)	$80<t \leqslant 100$	1	
4(b)	86 nfww	4	M1 for midpoints soi M1 for use of $\Sigma f x$ with x in correct interval including both boundaries M1 (dep on 2nd M1) for $\Sigma f x \div 150$
4(c)(i)	Reference to not knowing the individual values so we do not know the highest or the lowest values	1	
4(c)(ii)	62.4	2	M1 for $26 \div 150$ or $360 \div 150$ soi
4(d)	$\frac{22}{150} \text { oe }$	1	

Question	Answer	Marks	Partial Marks
4(e)(i)	$\frac{90}{22350} \text { oe }$	2	M1 for $\frac{10}{150} \times \frac{9}{149}$ After zero scored, SC1 for answer $\frac{100}{22500}$ oe
4(e)(ii)	$\frac{440}{22350} \text { oe }$	3	M2 for $\frac{10}{150} \times \frac{22}{149}+\frac{22}{150} \times \frac{10}{149}$ oe or M1 for $\frac{10}{150} \times \frac{22}{149}$ or $\frac{22}{150} \times \frac{10}{149}$ oe After zero scored, SC1 for answer $\frac{440}{22500}$ oe
4(f)	13, 8.5, 7.25, 1.1	3	B2 for 3 correct or B1 for 1 correct or for 3 correct FD.s 5.2, 3.4, 2.9, 0.44 oe
5(a)(i)	Image at (0,1), (0, 2), ($-3,1$)	2	B1 for reflection in $y=0$ or $x=k$
5(a)(ii)	Image at (0,0$),(0,-2),(6,-2)$	2	B1 for correct size and correct orientation wrong position or for 2 correct vertices plotted
5(a)(iii)	Image at (-5, 4), (-5, 5), (-2, 4)	2	B1 for translation by $\binom{-5}{k}$ or $\binom{k}{3}$
5(b)	Rotation 90° clockwise oe $(4,-1)$	3	B1 for each
5(c)(i)	$(4,1)$	2	M1 for $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\binom{1}{-4}$
5(c)(ii)	$(8,-1)$	2	$\begin{aligned} & \text { M1 for }\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{ll} 3 & 1 \\ 0 & 2 \end{array}\right)\binom{1}{-4} \\ & \text { or }\left(\begin{array}{cc} 0 & -2 \\ 3 & 1 \end{array}\right)\binom{1}{-4} \\ & \text { or }\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)\binom{-1}{-8} \end{aligned}$
5(c)(iii)	Rotation 90° anti-clockwise oe Origin oe	3	B1 for each

Question	Answer	Marks	Partial Marks
6(a)(i)	25.5 or $25.46 \ldots$	2	M1 for $\pi \times 5^{2} \times h=2000$ oe
6(a)(ii)	9.85 or 9.847...	3	M2 for $\left[r^{3}=\right] 2000 \div\left(\frac{2}{3} \pi\right)$ oe or M1 for $\frac{2}{3} \pi r^{3}=2000$ oe
6(a)(iii)	952 or 952.4....	3	M2 for $[6 \times] \sqrt[3]{2000}^{2}$ or M1 for $\sqrt[3]{2000}$ or 6 times their area of one face
6(b)(i)	22.5 or $22.49 \ldots$	2	M1 for $\frac{1}{2} \times 7 \times 10 \times \sin 40$
6(b)(ii)	$\begin{aligned} & \sqrt{ }\left(10^{2}+7^{2}-2 \times 10 \times 7 \cos 40\right)+7 \\ & +10 \end{aligned}$	M3	M2 for $10^{2}+7^{2}-2 \times 10 \times 7 \cos 40$ or M1 for correct implicit cosine rule
	23.46...	A2	A1 for $6.46 \ldots$ or 41.7 to 41.8
6(c)	64.9 or 64.92 to 64.94	3	M2 for $28.2-2 \times 9=\frac{c}{360} \times 2 \times \pi \times 9$ oe or M1 for $\frac{c}{360} \times 2 \times \pi \times 9$ soi
7(a)	9, -6, 9	3	B1 for each
7(b)	Correct graph	4	B3FT for 6 or 7 correct points or B2FT for 4 or 5 correct points or B1FT for 2 or 3 correct points
7(c)	-3.5 to -3.35 and 0.8 to 0.9. .	2FT	FT their graph B1FT for either
7(d)	$\begin{aligned} & a=\frac{5}{4} \text { or } 1 \frac{1}{4} \text { or } 1.25 \\ & b=-\frac{49}{8} \text { or }-6 \frac{1}{8} \text { or }-6.125 \end{aligned}$	3	B2 for either correct or M1 for [2] $\left(x+\frac{5}{4}\right)^{2}$ seen isw or for $2 x^{2}+4 a x+2 a^{2}+b$
8(a)(i)	5	1	
8(a)(ii)	$-\frac{3}{2} \text { oe }$	1	
8(b)	$\left(\frac{4}{5}, 0\right)$ oe	2	M1 for $5 x-4=0$ soi

Question	Answer	Marks	Partial Marks
8(c)	$y=-0.2 x+11$ final answer	$\mathbf{4}$	$\begin{array}{l}\text { M2 for } y=-0.2 x+c \text { oe (any form) FT } \text { their } \\ \text { (a) } \\ \text { or }\end{array}$
B1FT for grad $=\frac{-1}{\text { their }(\mathbf{a})(\mathbf{i})}$ soi			
and M1 for substitution of $(10,9)$ into their			
equation			

Question	Answer	Marks	Partial Marks
$10(\mathrm{~b})$	$X=8575$		$\mathbf{4}$
	$Y=6125$		B3 for $X=8575$ or $Y=6125$ or B2 for $a=5$ or $b=1$ soi or B1 for $1225=5^{2} \times 7^{2}$ or $42875=5^{3} \times 7^{3}$ or M1 for $a^{2} \times 7^{2}[=1225]$ or $a^{3} \times 7^{b+2}[=42875]$

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/41
Paper 4 (Extended)
May/June 2017
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Part marks
1(a)(i)	275.31	2	M1 for $90 \times 23.15+1885 \times 13.5$ oe
1(a)(ii)	3202	3	M2 for $\frac{198.16-90 \times 0.245}{0.055}$ oe M1 for 90×0.245 or 90×24.5 oe
1(b)	17.[0] or 17.00 to 17.01	2	M1 for $13.5 \times\left(1+\frac{8}{100}\right)^{3}$
1(c)(i)	40	3	$\begin{aligned} & \text { M2 for } \frac{7.7-5.5}{5.5}[\times 100] \text { oe or } \frac{7.7}{5.5} \times 100 \\ & \text { or M1 for } \frac{7.7}{5.5} \text { oe } \end{aligned}$
1(c)(ii)	11.9 or 11.86 to 11.87	3	M2 for $\sqrt[3]{\frac{7.7}{5.5}}$ oe or M1 for $5.5 \times x^{3}=7.7$ oe
1(d)	150 [million] oe	2	M1 for 390 [million] $\div(5+2+6)$
1(e)	250 nfww	3	M2 for $258.25 \div((100+3.3) \div 100)$ or M1 for 258.25 associated with 103.3[\%]
2(a)	$71<t \leqslant 72$	1	
2(b)	72.3 or 72.27 to 72.28 nfww	4	M1 for midpoints soi (condone 1 error or omission) M1 for use of $\sum f x$ with x in correct interval including both boundaries M1 (dep on 2 nd M1) for $\sum f x \div 90$
2(c)(i)	41, 62, 80, 90	2	B1 for 2 correct values

Question	Answer	Marks	Part marks
2(c)(ii)	Correct curve	3	B1FT their (c)(i) for 5 correct heights B1 for 5 points plotted at upper ends of intervals B1FT (dep on at least B1) for increasing curve or increasing polygon through 5 points If zero scored, SC1FT for 4 correct points plotted
2(c)(iii)	72.1 to 72.4	1	
2(c)(iv)	1.9 to 2.2	2	M1 for UQ = 73.2 to 73.4 or $\mathrm{LQ}=71.2$ to 71.3
2(d)	180 cao nfww	4	B3 for $50[\mathrm{~m} / \mathrm{s}]$ nfww OR M3 for $\frac{3725 \div 1000}{74.5 \div 3600}$ OR M2 for $3725 \div 74.5$ or M1 for 3725 or 74.5 seen or for (3715 to 3725) $\div(74.5$ to 75.5$)$ M1 indep for multiply by 3.6 oe
3(a)(i)	Image at (5, 1), (7, 1), (7, 4)	2	B1 reflection in $y=4$ or $x=k$
3(a)(ii)	Image at (-1, 1), (-4, 1), (-1, 3)	2	B1 correct size and correct orientation wrong position or for rotation 90° clockwise around $(0,0)$
3(a)(iii)	Image at (2, - 4), (4, - 4) , (2, - 1)	2	B1 for translation by $\binom{1}{k}$ or $\binom{k}{-5}$
3(b)	Enlargement	1	
	[sf] - 0.5 oe	1	
	$(5,5)$	1	
3(c)	$\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$	2	B1 for one correct column or row
3(d)(i)	$(4,2)$	2	M1 for $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)\binom{4}{1}$ oe

Question	Answer	Marks	Part marks
3(d)(ii)	$(-4,2)$	3	$\begin{aligned} & \text { M2 for }\left(\begin{array}{cc} -1 & 0 \\ 0 & 2 \end{array}\right) \text { or }\left(\begin{array}{ll} 1 & 0 \\ 0 & 2 \end{array}\right)\binom{-4}{1} \\ & \text { or M1 for }\left(\begin{array}{ll} 1 & 0 \\ 0 & 2 \end{array}\right)\left(\begin{array}{ll} -1 & 0 \\ 0 & 1 \end{array}\right)\left[\binom{4}{1}\right] \\ & \text { or }\binom{-4}{1} \end{aligned}$
3(d)(iii)	$\frac{1}{2}\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$ oe isw	3	M2 for det $=2$ soi or $k\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$ soi or M1 for recognition that \mathbf{Q} is inverse matrix of \mathbf{G} or $\mathbf{G Q}=\mathbf{I}$ or $\mathbf{Q G}=\mathbf{I}$
4(a)	-1.6 to -1.4	1	
4(b)	-0.5	1	
4(c)	$k>-4$	2	B1 for identifying the -4 or for horizontal line drawn $y=-4$
4(d)	$\begin{aligned} & y=x-5 \text { ruled } \\ & \text { and } \\ & -2.3 \text { to }-2.1 \\ & -1.2 \text { to }-1.1 \\ & 1.3 \text { to } 1.4 \end{aligned}$	3	B2 for correct line and 2 correct values or no line and 3 correct values or $\mathbf{B 1}$ for no line and 2 correct values or $\mathbf{B 1}$ for correct line
4(e)	Tangent ruled at $x=1$	B1	No daylight at point of contact. Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x=0.8$ and 1.2
	-6 to -4	2	Dep on B1 or close attempt at tangent at $x=1$ M1 for rise/run for their tangent at $x=1$
5(a)(i)	50890 or 50893 to 50900.4	2	M1 for $\pi \times 18^{2} \times 50$

Question	Answer	Marks	Part marks
5(a)(ii)	20.5 or 20.52 to 20.534	3	B2 for answer 29.5 or 29.46 to 29.48 OR M2 for $(50900-30000) \div\left(\pi \times 18^{2}\right)$ oe or M1 for (figs $50.9-$ figs 30$) \div\left(\pi \times\right.$ figs $\left.18^{2}\right)$ or M1 for $(50900-30000)=\left(\pi \times 18^{2}\right) h$ oe OR alternative method M2 for $50-\frac{30000}{\pi \times 18^{2}}$ oe M1 for figs $30=\pi \times$ figs $18^{2} \times(50-h)$ oe or for $\frac{\text { figs } 30}{\pi \times \text { figs } 18^{2}}$ oe OR alternative method M2 for $\frac{(50.9-30)}{50.9} \times 50$ oe or M1 for $\frac{(50.9-30)}{50.9}$ or $\frac{30}{50.9} \times 50$ oe or M1 for $\xlongequal[(\text { figs } 50.9-\text { figs } 30)]{\text { figs } 50.9} \times 50$ oe figs 50.9
5(a)(iii)	334 nfww	4	M2 for figs $30 \div \frac{2}{3} \pi \times 3.5^{3}$ oe or M1 for $\frac{1}{2} \times \frac{4}{3} \pi \times 3.5^{3}$ oe and B1 for 30000
5(b)(i)	3.28 [6..] or 3.29	3	M2 for $\left[r^{2}=\right] \frac{95 \times 3}{8.4 \pi}$ oe or M1 for $\frac{1}{3} \pi \times r^{2} \times 8.4[=95]$
5(b)(ii)	93.1 to 93.6	4	M3 for $\pi \times 3.3 \times \sqrt{3.3^{2}+8.4^{2}}$ or M2 for $\sqrt{3.3^{2}+8.4^{2}}$ or M1 for $3.3^{2}+8.4^{2}$
6(a)(i)	$-7 x+55$ final answer	2	M1 for $8 x+20$ or $-15 x+35$ or answer $-7 x+k$ or $k x+55$
6(a)(ii)	$x^{2}-14 x+49$ final answer	2	M1 for 3 of $x^{2}-7 x-7 x+49$

Question	Answer	Marks	Part marks
6(b)(i)	-18	3	M1 for a correct first step ie correctly multiplying by 3 or correctly dividing by 2 or for correctly subtracting 5 M1 for correctly reaching $a x=b$ from their first step
6(b)(ii)	15	3	M2 for $6 x-4 x=21+9$ oe or M1 for $6 x-21$ or correct division by 3 or for correctly reaching $a x=b$ from their first step
6(b)(iii)	5 and -5	3	B2 for 5 or -5 or M1 for $\left[x^{2}=\right](74+1) \div 3$ or better
7(a)	$(-0.5,3)$	2	B1 for one correct value
7(b)	$[y=]-2 x+2$ final answer	3	M1 for $\frac{-2-8}{2--3}$ or better M1 for substitution of $(-3,8)$ or $(2,-2)$ or their midpoint into $y=m x+c$ with their m
7(c)	$y=-2 x+7$ oe	2FT	FT their (b) M1 for $y=($ their -2$) x+k(k \neq 2)$ or $y=k x+7(k \neq 0)$ If zero scored, SC1 for $($ their -2$) x+7$
7(d)	$x-2 y+9=0$ or $2 y-x-9=0$ oe	4	B3 for any correct equivalent in wrong form Or M2 for $y=1 / 2 x+k$ oe (FT negative reciprocal of their gradient in (b)) or M1 for $\operatorname{grad}=1 / 2($ FT negative reciprocal of their gradient in (b)) M1 for substitution of $(1,5)$ into $y=m x+c$ oe with their m
8(a)(i)	290	2	M1 for $180+110$ oe
8(a)(ii)	156.8 or 156.7[9..]	5	B1FT for $C B A=10^{\circ}($ their $(\mathbf{a})-280)$ and $\mathbf{B 3}$ for [angle $A C B=] 13.2^{\circ}$ or M2 for $[\sin C]=\frac{50 \sin (\text { their } 10)}{38}$ or $\mathbf{M 1}$ for $\frac{50}{\sin C}=\frac{38}{\sin (\text { their } 10)}$ oe

Question	Answer	Marks	Part marks
8(a)(iii)	8.68 or 8.677 to 8.684	3	M2 for $[x=] 50 \sin ($ their 10$)$ oe or M1 for $\sin ($ their 10$)=\frac{x}{50}$ oe or M1 for a correct right-angled triangle drawn with 50 as hypotenuse
8(b)(i)	$x(x-25)=2200$	1	and no errors seen
8(b)(ii)	$\frac{-(-25) \pm \sqrt{(-25)^{2}-4(1)(-2200)}}{2(1)} \text { or }$ better	B2	B1 for $\sqrt{(-25)^{2}-4(1)(-2200)}$ or better or for $\left(x-\frac{25}{2}\right)^{2}$ oe or $\mathbf{B} 1$ for $\frac{-(-25)+\sqrt{q}}{2(1)}$ or $\frac{-(-25)-\sqrt{q}}{2(1)}$ or both or for $\frac{25}{2}+$ or $-\sqrt{\left(\frac{25}{2}\right)^{2}+2200}$
	-36.04 and 61.04 final answer	B1,B1	If $\mathbf{B 0 B 0} \mathbf{0}, \mathbf{S C 1}$ for values in ranges -36.042 to -36.041 and 61.041 to 61.042 seen or for answers $-36[.0]$ or -36.042 to -36.041 and $61[.0]$ or 61.041 to 61.042 or -36.04 and 61.04 seen in working or for -61.04 and 36.04 as final ans
9(a)(i)	5 and 13	1	
9(a)(ii)	$8 n-3=203$	M1	Evaluation of 25th or 26th term with supporting evidence or explanation
	25.75 or $25 \frac{3}{4}$	A1	Second evaluation of 25th or 26th terms with supporting evidence or explanation If zero scored, SC1 for 25.75 or 197 and 205 with partial evidence or explanation
9(b)(i)	$6 n+7$ oe final answer	2	B1 for $6 n+c$ or $k n+7 k \neq 0$
9(b)(ii)	$n^{2}+n+2$ oe final answer	2	B1 for a quadratic expression or second difference $=2$
9(c)	$[y=] 10$	2	M1 for 5(20-y) = 50
	[First term =] 14	2	$\begin{aligned} & \text { M1 for } 5(x-\text { their } y)=20 \\ & \text { or for } 20 \div 5+\text { their } y \end{aligned}$

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/42
Paper 4 (Extended)
May/June 2017
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Question	Answer	Marks	Part marks
1(a)(i)	$600 \div(11+9) \times 11[=330]$ with no errors seen	M1	Could be in separate steps
1(a)(ii)	270	1	
1(b)(i)	372 cao nfww	3	B2 for answer 371.7... or M1 for $330 \times\left(1+\frac{1.5}{100}\right)^{8}$ oe not spoiled After zero scored, SC1 for answer 42 or 41.7...
1(b)(ii)	12.6 or 12.7 or 12.63 to 12.73	2	M1 for $\frac{\text { their } \mathbf{(b) (\mathbf { i }) - 3 3 0}}{330}$ or $\frac{\text { their } \mathbf{(b) (\mathbf { i })}}{330} \times 100$ soi by 112.7 or 113 After zero scored, SC1 for answer 12\%
1(c)(i)	$\frac{99}{280}$ cao final answer	1	
1(c)(ii)	27.5[0]	3	M2 for $24.75 \div \frac{100-10}{100}$ oe or M1 for recognising 24.75 as 90 [\%] oe
1(d)(i)	32 cao	2	M1 for $\left(1-\frac{20}{100}\right)\left(1-\frac{15}{100}\right)[x] \mathrm{oe}$ or for $0.15 \times 0.8[x]$ oe
1(d)(ii)	13 cao	2	M1 for $\left(1-\frac{20}{100}\right)\left(1-\frac{15}{100}\right) \times x=40.84-32$ oe seen or for their $\mathbf{(d)} \mathbf{(i)}+\left(1-\left(\frac{\text { their } \mathbf{(d)} \mathbf{(i)}}{100}\right)\right) x=40.84 \mathrm{oe}$
2(a)(i)	Image at (8,1$),(10,5),(8,5)$	2	B1 for translation $\binom{6}{k}$ or $\binom{k}{-5}$ or 3 correct points not joined
2(a)(ii)	Image at (4, 10), (4, 8), (8, 8)	2	B1 for rotation 90° anticlockwise but different centre or for rotation 90° clockwise about $(4,10)$ or 3 correct points not joined
2(a)(iii)	Image at (6, 3), (6, 5), (7, 5)	2	B1 for enlargement factor $\frac{1}{2}$ but incorrect centre or 3 correct points not joined
2(b)	Reflection	1	
	$y=-x$ oe	1	If zero scored, M1 for correct use of matrix product

Question	Answer	Marks	Part marks
2(c)(i)(a)	$\binom{13}{16}$	2	B1 for each in a 2 by 1 matrix or SC1 for (13 [,] 16)
2(c)(i)(b)	$\left(\begin{array}{ll}2 & 10 \\ 3 & 15\end{array}\right)$	2	B1 for answer any 2 by 2 matrix
2(c)(i)(c)	$\frac{1}{2}\left(\begin{array}{cc}4 & -3 \\ -2 & 2\end{array}\right)$ oe isw	2	B1 for $k\left(\begin{array}{cc}4 & -3 \\ -2 & 2\end{array}\right)$ oe soi $(k \neq 0)$ or for determinant $=2$ oe soi
2(c)(ii)	$\mathbf{N M}$ or MP or \mathbf{N}^{2} oe or $\mathbf{P}^{\mathbf{2}}$ oe	1	
3(a)(i)	175.5 nfww	4	M1 for at least four of $50,125,175,225,325 \text { soi }$ M1 for $\Sigma f x$ with x inside or on boundary of each interval M1 (dep on second M1) for $\frac{\text { their } \Sigma f x}{200}$
3(a)(ii)	Fully correct histogram	4	B1 for each correct bar If zero scored, B1 for $0.2,1.32,0.7,0.16$ seen
3(b)(i)	Fully correct cumulative frequency diagram	3	B1 for correct horizontal plots B1 for correct vertical plots B1FT dep on at least B1 earned for points joined with smooth increasing curve or polygon If zero scored, SC1 for 4 correct plotted points
3(b)(ii)(a)	170 to 175	1	
3(b)(ii)(b)	152 to 158	2	M1 for 42 to 48 written
4(a)	-1.75 to -1.7	1	
	1.7 to 1.75	1	
4(b)(i)	Correct ruled solid tangent at $(-1.5,3.5)$	1	
4(b)(ii)	-7 to -5	2 dep	dep on close attempt at ruled solid tangent at $x=-1.5$ in part (b)(i) M1 for rise/run dep on close attempt at ruled solid tangent at $x=-1.5$
4(c)(i)	1	1	
4(c)(ii)	Correct curve	3	B2 for 4 or 5 correct points or B1 for 2 or 3 correct points

Question	Answer	Marks	Part marks
4(d)(i)	-0.95 to -0.8	1	
	1.1 to 1.45	1	
4(d)(ii)	their $(-0.95$ to -0.8$)<x<$ their (1.1 to 1.45) oe	1FT	correct or FT their (d)(i)
4(e)(i)	0.125 oe and 0.03125 oe and 0.000976 to 0.000977 oe	1	
4(e)(ii)	0	1	accept zero, nought, etc
5(a)(i)	94.2 or 94.3 or 94.24 to 94.26	2	M1 for $\pi \times 3 \times 10$
5(a)(ii)	9.54 or 9.539...	3	M2 for $\sqrt{10^{2}-3^{2}}$ or M1 for $h^{2}+3^{2}=10^{2}$ oe
5(a)(iii)	89.9 or 89.90 to $89.92 \ldots$	2	$\text { M1 for } \frac{1}{3} \times \pi \times 3^{2} \times \text { their }(\mathbf{a})(\text { ii })$
5(b)	108 or 107.9 to 108.1 nfww	4	M3 for $\frac{\pi \times 3 \times 10}{\pi \times 10^{2}} \times 360$ oe or $\frac{\text { their } \mathbf{(a) (i)}}{\pi \times 10^{2}} \times 360$ oe or $\frac{2 \times \pi \times 3}{2 \times \pi \times 10} \times 360$ oe or M2 for $\frac{x}{360} \times \pi \times 10^{2}=\operatorname{their}(\mathbf{a})(\mathbf{i})$ oe or $\frac{x}{360} \times 2 \times \pi \times 10=2 \times 3 \times \pi$ oe or M1 for $\frac{x}{360} \times \pi \times 10^{2}$ seen or $\frac{x}{360} \times 2 \times \pi \times 10$ seen
5(c)	46.6 to 46.8	4	M3 for $\frac{\text { their } \mathbf{(b)}}{360} \times \pi \times 10^{2}-\frac{1}{2} \times 10 \times 10 \times \sin ($ their $\mathbf{(b)})$ oe or M1 for $\frac{\text { their } \mathbf{(b)}}{360} \times \pi \times 10^{2}$ or their (a)(i) soi and M1 for $\frac{1}{2} \times 10 \times 10 \times \sin ($ their $(\mathbf{b}))$ soi
6(a)	$\frac{1}{3}, \frac{6}{7}$ correctly placed	1	
	$\frac{4}{7}, \frac{3}{7}$ correctly placed	1	

Question	Answer	Marks	Part marks
6 (b)	$\frac{2}{21} \mathrm{oe}$	2	$\text { M1 for } \frac{2}{3} \times \frac{1}{7}$
6(c)(i)	$\frac{15}{21} \mathrm{oe}$	3	M2 for $\frac{2}{3} \times \frac{6}{7}+\frac{1}{3} \times \frac{3}{7}$ oe or M1 for $\frac{2}{3} \times \frac{6}{7}$ oe or $\frac{1}{3} \times \frac{3}{7}$ oe seen
6(c)(ii)	50	2FT	FT (70 \times their $(\mathbf{c})(\mathbf{i})$) rounded up or down to integer M1 for $70 \times$ their $(\mathbf{c})(\mathbf{i})$
6(d)	$\frac{10}{243} \text { oe }$	2	M1 for $\frac{2}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3} \times \frac{1}{3}[\times k]$ oe nfww where k is positive integer less than 5
7(a)(i)	4.5 or $4 \frac{1}{2}$ or $\frac{9}{2}$ final answer	3	M2 for $[2](4 x+7)=[2](6 x-2)$ oe or M1 for $2(2 x+6)+2(2 x+1)$ oe or $4(3 x-1)$ oe or M1 for correctly reaching $a x=b$ from their linear equation
7(a)(ii)	$(2 x+6)(2 x+1)=(3 x-1)^{2}$	M1	May be seen in different stages
	$5 x^{2}-20 x-5[=0]$ oe	B3	B1 for $4 x^{2}+2 x+12 x+6$ or better B1 for $9 x^{2}-3 x-3 x+1$ or better
	$\frac{-(-20) \pm \sqrt{(-20)^{2}-4(5)(-5)}}{2(5)}$ oe	M2	FT their 3 term quadratic provided formula used or complete the square M1 for $\sqrt{(-20)^{2}-4(5)(-5)}$ oe or if in form $\frac{-(-20)+\sqrt{q}}{2(5)}$ or $\frac{-(-20)-\sqrt{q}}{2(5)} \mathbf{F T} \pm$ their quadratic or for completing the square M2 for $2 \pm \sqrt{1+2^{2}}$ or M1 for $(x-2)^{2}$
	4.24 or 4.236... cao	B1	
7(b)(i)	$(x+5)(x-1)$ final answer	2	$\begin{aligned} & \text { B1 for } x(x-1)+5(x-1) \\ & \text { or } x(x+5)-[1](x+5)) \\ & \text { or for }(x+a)(x+b) \text { where } a b=-5 \\ & \text { or } a+b=4 \end{aligned}$

Question	Answer	Marks	Part marks
7(b)(ii)	$\begin{aligned} & 5(x+1)-8 x=x(x+1) \\ & \text { or } 5 x+5-8 x=x^{2}+x \end{aligned}$	M2	Could be seen in different stages M1 for $5(x+1)-8 x$ seen or for common denominator of $x(x+1)$ for LHS or both sides soi
	-5 and 1 cao	A2	A1 for $x^{2}+4 x-5[=0] \mathrm{oe}$
8(a)	$66[.0]$ or 66.03 to 66.04	2	M1 for $\tan =\frac{9}{4}$ oe
8(b)	$\sqrt{3^{2}+4^{2}}$ or $\frac{1}{2} \sqrt{6^{2}+8^{2}}$	M1	Any alternative method must be full and complete and result in exactly 5
8(c)	60.9 or 60.94 to 60.95	2	M1 for $\tan =\frac{9}{5}$ oe
8(d)	5.83 or 5.84 or 5.827 to 5.840	6	M1 for $[P B$ or $P C=] \sqrt{9^{2}+5^{2}}$ or $[X C=] \sqrt{9^{2}+5^{2}}-7.5$ M1 for angle $B P X=2 \times \operatorname{invsin} \frac{3}{\text { their } P B}$ oe B1 for $[P B$ or $P C=] \sqrt{106}=10.29$ to 10.30 or $X C=2.79$ to 2.8[0] or angle $B P X=33.9$ or 33.86 to $33.90 \ldots$ M2 for $\sqrt{(\text { their } P B)^{2}+7.5^{2}-2 \times \text { their } P B \times 7.5 \times \cos (\text { their } B P X)}$ oe or M1 for correct implicit equation
9(a)(i)	100	1	
9(a)(ii)	92.3 or $92.29 \ldots$ to 92.31	3	M2 for $200 \div\left(2+\frac{10}{60}\right)$ oe or M1 for $200 \div$ their time interval or M1 for $\frac{10}{60}$ soi oe
9(b)(i)	240 nfww	3	M2 $\operatorname{for} \frac{V}{2}\left(\frac{30}{60}+\frac{20}{60}\right)=100$ oe or M1 for any correct relevant area seen in terms of V
9(b)(ii)	$\frac{2}{9}$ oe	2FT	FT for their (b)(i) $\div 1080$ to 3 sf or better M1 for their (b)(i) $\times \frac{1000}{3600}$ soi

Question	Answer	Marks	Part marks
$10(\mathrm{a})$	-11	$\mathbf{1}$	
$10(\mathrm{~b})$	7	$\mathbf{2}$	M1 for $3 x-2=19$ or better
$10(\mathrm{c})$	25	$\mathbf{2}$	M1 for $3 \times 3^{x}-2$ oe
$10(\mathrm{~d})$	$9 x^{2}-8 x+2$ final answer	$\mathbf{3}$	M1 for $(3 x-2)^{2}+3 x-2+x$ oe
			B1 for $\left[(3 x-2)^{2}=\right] 9 x^{2}-6 x-6 x+4$ oe
$10(e)$	$\frac{x+2}{3}$ oe final answer	$\mathbf{2}$	M1 for $x=3 y-2$ or $y+2=3 x$ or $\frac{y}{3}=x-\frac{2}{3}$ or better

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/43
Paper 4 (Extended)
May/June 2017
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Part marks
1(a)(i)	9550	1	
1(a)(ii)	23158750	2FT	FT their $\mathbf{(a) (i)} \times 2425$ correctly evaluated M1 for their lower bound $\times 2425$
1(a)(iii)	23160000	1FT	FT their (a)(ii) rounded to 4 sf
1(a)(iv)	2.316×10^{7}	1FT	FT their (a)(iii) or their (a)(ii) rounded to 3 sf or more and in standard form
1(b)	520 nfww	3	M2 for $546 \times \frac{100}{(100+5)}$ oe or M1 for 105[\%] associated with 546 oe
1(c)	3380 or 3376 to 3377	2	M1 for $3000 \times\left(1+\frac{3}{100}\right)^{4}$ oe
2(a)	38	1	
	118	1	
	62	1FT	FT 180 - their y
2(b)	69	3	B2 for $A C B=42$ or B1 for $A D B=42$ If zero scored, $\mathbf{S C 1}$ for $A C B=$ their $A D B$
2(c)	107	2	B1 for $Q P S=73$ or [reflex] $Q O S=214$
3(a)	$\begin{array}{llll}0 & 2.25 & 2 & 1.25\end{array}$	4	B1 for each
3(b)	Fully correct smooth curve	4	B3 FT for 7 or 8 points or B2 FT for 5 or 6 points or B1 FT for 3 or 4 points

Question	Answer	Marks	Part marks
3(c)	1	1	
3(d)(i)	[$y=] x+1$	1	
3(d)(ii)	-2.2 to -2.1	1	
	-0.45 to -0.4	1	
	0.51 to 0.6	1	If zero scored, SC1 for their line in (d)(i) drawn. It must be of the form $y=m x+c(m \neq 0)$ and drawn 'fit for purpose'
3(e)	$-1.33<k<0$ to 0.1	$2 \mathrm{FT}$	FT Strict ft of their max point and min point dep on cubic graph or accept correct answer from calculus B1 for each If zero scored, $\mathbf{S C 1}$ for two correct values reversed
4(a)(i)	17.5 or 17.46...nfww	6	B3 for triangle height 3.46[4...] or $\sqrt{12}$ oe or $\mathbf{M} \mathbf{2}$ for $\sqrt{4^{2}-2^{2}}$ or M1 for $h^{2}+2^{2}=4^{2}$ and M2 for $2 \times 7+\frac{1}{2} \times 2 \times$ their h oe or M1 for $\frac{1}{2} \times 2 \times$ their h
4(a)(ii)	140 or 139.6 to 139.7...	1FT	FT their (a) $\times 8$
4(b)(i)	2.62 or 2.618...	3	M2 for $\left[r^{2}=\right] \frac{280}{13 \pi}$ oe or M1 for $280=\pi \times r^{2} \times 13$
4(b)(ii)	$10.2 \text { or } 10.20 \ldots \text { or } 10 \frac{10}{49}$	3	M2 for $\frac{280}{14^{3}}[\times 100]$ oe or $\mathbf{B 1}$ for 2744 or 14^{3} seen
5(a)(i)	$80 \quad 33 \quad 20$	1, 1, 1	
5(a)(ii)	17.3 nfww	4	M1 for 5, 15, 22.5, 27.5, 40 soi M1 for $\sum f x$ with their f 's and x in correct interval including both boundaries M1 (dep on 2 nd M1) for $\sum f x \div 200$

Question	Answer	Marks	Part marks
5(b)(i)	$\frac{30}{210} \text { oe }$	2	M1 for $\frac{6}{15} \times \frac{5}{14}$ If zero scored, SC1 for answer $\frac{36}{225}$ oe
5(b)(ii)	$\frac{108}{210} \text { oe }$	3	M2 for $\frac{6}{15} \times \frac{9}{14}+\frac{9}{15} \times \frac{6}{14}$ oe or $1-\frac{9}{15} \times \frac{8}{14}-\frac{6}{15} \times \frac{5}{14}$ or M1 for $\frac{6}{15} \times \frac{9}{14}$ or $\frac{9}{15} \times \frac{6}{14}$ or $\frac{9}{15} \times \frac{8}{14}+\frac{6}{15} \times \frac{5}{14}$ If zero scored, SC1 for answer $\frac{108}{225}$ oe
5(c)	150	1	
6(a)(i)	Translation	1	
	$\binom{3}{-13}$ oe	1	
6(a)(ii)	Enlargement	1	
	$[s f]-\frac{1}{2} \text { oe }$	1	
	(0, -4)	1	
6(b)	Image at $(0,0)(0,6)(-4,6)(-4,2)$	2	B1 for rotation of 90° anticlockwise about the wrong centre or 90° clockwise about $(3,-1)$ or 4 points correct but not joined.
6(c)	Image at $(4,0)(10,0)(10,-4)(6,-4)$	2	B1 for reflection in $y=k$ or in $x=1$ or 4 points correct but not joined
6(d)	Enlargement	1	
	[sf] 3	1	
	Origin oe	1	

Question	Answer	Marks	Part marks
7(a)	$\begin{aligned} & {[x=]-5} \\ & {[y=] 7} \end{aligned}$ with correct working	4	M1 for correctly equating one set of coefficients M1 for correct method to eliminate one variable OR M1 for correctly rearranging one equation M1 for correct method to eliminate one variable A1 $x=-5$ A1 $y=7 \quad$ both dep on M2 If zero scored, SC1 for 2 values satisfying one of the original equations SC1 if no correct working shown, but 2 correct answers given
7(b)	$\begin{aligned} & {[a=] 36} \\ & {[b=]-6} \end{aligned}$	3	B2 for either correct or M1 for $a=b^{2}$ or for $x^{2}+b x+b x+b^{2}$ or better or for $(x-6)^{2}$ seen and M1 for $2 b=-12$ soi
7(c)	$\frac{7 x^{2}-12 x-10}{(2 x-5)(x-1)}$ oe final answer nfww	4	B1 for common denom $(2 x-5)(x-1)$ seen oe isw M1 for $x(x-1)+(3 x+2)(2 x-5)$ soi isw B1 for $6 x^{2}-15 x+4 x-10$ soi
8(a)(i)	4 points correctly plotted	2	B1 for 2 or 3 points correctly plotted
8(a)(ii)	Positive	1	
8(b)	mean 3.1	3	M2 for $\frac{\text { sum of products }}{30}$ or M1 for at least 4 correct products soi
	median 3	2	M1 for 15.5 oe indicated
	mode 5	1	
	range 5	1	
8(c)	24 nfww	3	M1 for $\frac{x \times 52+45 \times 75+11 \times 91}{x+45+11}[=70.3]$ M1 for clearing their fraction

Question	Answer	Marks	Part marks
9(a)	1120 or 1121.	4	$\text { M2 for }\left[A C^{2}=\right]$ $525^{2}+872^{2}-2 \times 525 \times 872 \times \cos 104$ or M1 for implicit version A1 for 1257000 to 1258000
9(b)	[QB or $x=$] $872 \times \tan 1$ seen	M2	M1 for $\tan 1=\frac{Q B}{872}$
	tan $=$ their $Q B \div 525$	M1	
	1.7 or 1.660 to 1.661 nfww	A1	dep on M3
9(c)(i)	222000 or $222100 . \ldots$. or 222101	2	M1 for $\frac{1}{2} \times 525 \times 872 \times \sin 104$
9(c)(ii)	5.55 or 5.550 to 5.553 nfww	2FT	FT their $(\mathbf{c})(\mathbf{i}) \times 100^{2} \div 20000^{2}$ M1 for their $(\mathbf{c c})(\mathbf{i}) \times 100^{2} \div 20000^{2}$ or restart
10(a)		4	All 8 regions correct M3 for 6 or 7 regions correct M2 for 4 or 5 regions correct M1 for 3 regions correct
10(b)(i)	\notin	1	
10(b)(ii)	\varnothing	1	
10(c)	21, 23, 24, 29	2FT	Correct or FT SC1 for 1 omission or 4 correct and 1 extra
10(d)(i)	5	1FT	Correct or FT if less than 10
10(d)(ii)	9	1FT	Correct or FT if less than 10
10(e)	\subset or \subseteq	1	

Question	Answer	Marks	Part marks
11	64	$(n+3)^{2}$ oe final answer	$\mathbf{1 , 2}$

second differences 2\end{array}\right]\)

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/42
Paper 42 (Extended)
March 2017

MARK SCHEME

Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Marks	Part Marks
1 (a) (b) (c) (d) (e)	$\begin{aligned} & 22.9 \text { or } 22.85 \text { to } 22.86 \\ & 5635 \times \frac{17}{10+17+8} \text { or better }[=2737] \\ & 5000 \\ & 9950 \\ & 1.98 \text { final answer } \end{aligned}$	2 2 3 2 2	M1 for $\frac{8}{10+17+8}[\times 100]$ oe M1 for $\frac{5635}{(10+17+8)}$ M2 for $5635=k\left(1+\frac{2.42}{100}\right)^{5}$ oe or B1 for $\left(1+\frac{2.42}{100}\right)$ M1 for 2×2500 or 3×1650 B1 for 1.976 or 1.98 not final answer or M1 for 130×0.0152
2 (a) (i) (ii) (iii) (b) (i) (ii)	Rotation 90° [anticlockwise] oe $(9,5)$ Translation $\binom{-8}{-14}$ oe Enlargement [sf] $\frac{1}{3}$ $(-8,-2)$ Image at $(1,-3)(2,-3)(2,-5)$ $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	1 2	M1 for triangle correct size and orientation, wrong position or SC1 for correct reflection in $y=-x$ B1 for 1 correct column or row

Question	Answer	Marks	Part Marks
3 (a) (b) (c) (d) (e) (i) (ii) (iii)	00.5 oe 1.25 oe Fully correct smooth curve 3.6 to 3.8 line $y=x+1$ ruled $-1.55 \text { to }-1.40 \quad 4.55 \text { to } 4.8$ Point plotted at $(5,5)$ Tangent ruled from A 1.2 to 1.4	$\begin{gathered} 1,1,1 \\ 4 \\ \\ 2 \\ \text { M1 } \\ \text { A1 A1 } \\ \hline 1 \\ 1 \\ \text { B2 } \end{gathered}$	B3 FT for 7 or 8 points or B2 FT for 5 or 6 points or B1 FT for 3 or 4 points M1 for $y=3.5$ soi If 0 scored $\mathbf{S C 1}$ for $y=x+1$ stated or implied or for 2 correct values given B2 and M1 dep on reasonable attempt at tangent from $(5,5)$ M1 for change in y / change in x of their ruled line
4 (a) (b) (c) (i) (ii) (d)	$\begin{aligned} & \frac{1}{8} \mathrm{oe} \\ & \frac{7}{12} \mathrm{oe} \\ & \frac{1}{16} \mathrm{oe} \\ & \frac{2}{24} \mathrm{oe} \end{aligned}$	3 2 2 3 1	M2 for $\frac{1}{2}\left(1-\frac{1}{6}-\frac{1}{4}-\frac{1}{3}\right)$ oe or M1 for $\frac{1}{6}+\frac{1}{4}+\frac{1}{3}$ seen oe or idea that all sum to 1 M1 for $\frac{1}{3}+\frac{1}{4}$ oe M1 for $\frac{1}{4} \times \frac{1}{4}$ oe M2 for $2 \times \frac{1}{6} \times \frac{1}{4}$ oe or M1 for $\frac{1}{6} \times \frac{1}{4}$ oe

Question	Answer	Marks	Part Marks
$5 \quad$ (a) (i)	$(3 x-1)(x+4)$	2	M1 for $(3 x+b)(x+c)$ with $b c=-4$ or $3 c+b=11$ or for $3 x(x+4)-1(x+4)$ or for $x(3 x-1)+4(3 x-1)$
(ii)	$\frac{1}{3}$ oe and -4	1	
(b) (i)	$2 \times 2(x-4)-2(2 x+11)=(2 x+11)(x-4)$ or better	M2	M1 for common denom $2(2 x+11)(x-4)$ seen or attempt to multiply through by denoms or for $\frac{2(x-4)-(2 x+11)}{(2 x+11)(x-4)}\left[=\frac{1}{2}\right]$
	$2 x^{2}+11 x-8 x-44$ or better	B1	or for other correct relevant 2 bracket expansion if alt method used
	$\begin{aligned} & 4 x-16-4 x-22=2 x^{2}-8 x+11 x-44 \\ & 2 x^{2}+3 x-6=0 \end{aligned}$	A1	correct solution reached with all brackets expanded and no errors or omissions seen
(ii)	$-3 \pm \sqrt{(3)^{2}-4(2)(-6)}$	2	B1 for $\sqrt{\left.(3)^{2}-4(2)(-6)\right)}$ or better
			or $\left(x+\frac{3}{4}\right)^{2}$ oe and $\mathbf{B 1}$ for $\frac{-3+\sqrt{q}}{2(2)}$ or $\frac{-3-\sqrt{q}}{2(2)}$ or better or $-\frac{3}{4}+\sqrt{\frac{57}{16}}$ oe or $-\frac{3}{4}-\sqrt{\frac{57}{16}}$ oe
	-2.64 and 1.14 final ans cao	B1B1	SC1 for -2.6 or $-2.637 \ldots$ and 1.1 or 1.137... or -2.64 and 1.14 seen in working or 2.64 and -1.14 as final answers
$6 \quad$ (a) (i)	27	1	
(ii)	3.89 or 3.888 to 3.889	2	M1 for $\frac{7}{E Z}=\frac{9}{5}$ oe
(b)	76 cao	3	B2 for $A B C=104$ or $A O C=152$ or $C O D=28$ or $O B A=52$ and $O B C=52$ or $B C D=128$ and $O C B=52$ or B1 for any one of $O B A, O B C$, $O C B=52 \text { or } B C D=128$

Question	Answer	Marks	Part Marks
(c) (i) (ii) (iii)	90 angle in semicircle 27 tangent [perpendicular to] radius rectangle	1	
$7 \quad$ (a) (b) (i) (ii) (iii) (a) (b) (c)	72.7 or 72.70 to 72.71 nfww [23] 87209345371 [400] Correct graph 69 to 70 20 to 23 72 to 75	4 2 3 1 2FT 2	M1 for midpoints soi (condone 1 error or omission) $(47.5,55,65,80,95,110)$ M1 for use of $\sum f x$ with x in correct interval including both boundaries (condone 1 further error or omission) (1092.5, 3520, 7930, 10880, 2470, 3190) $\text { M1 (dep on 2nd M1) for } \sum f x \div 400$ B1 for 2 or 3 correct B1FT their (b)(i) for 6 correct heights B1 for 6 points at upper ends of intervals on correct vertical line B1FT (dep on at least B1) for increasing curve or polygon through 6 points After 0 scored, SC1FT their (b)(i) for 5 correct points plotted FT their cumulative freq curve M1 for correct UQ or LQ for their cumulative freq curve M1 for 240 soi
8 (a) (i)	5.14 or 5.135 to 5.142 nfww	4	M2 for $\left[X Y^{2}=\right] 12.5^{2}+9.9^{2}-2 \times 12.5 \times 9.9 \times$ $\cos 23$ or M1 for implicit version A1 for 26.4 to 26.5 OR B1 for $[X Y T=] 108$ or [TXY =] 49 M2 for $\frac{12.5 \sin 23}{\sin (180-72)}$ oe or M1 for $\frac{\sin (180-72)}{12.5}=\frac{\sin 23}{X Y}$ oe

\begin{tabular}{|c|c|c|c|}
\hline Question \& Answer \& Marks \& Part Marks

\hline (ii)

(b) \& 15.6 or 15.7 or 15.64 to 15.68

\[
3.79 or 3.793 to 3.794

\] \& 4 \& | M2 for $[T Z=] \frac{9.9}{\sin 37} \times \sin (72)$ oe or M1 for $\frac{9.9}{\sin 37}=\frac{T Z}{\sin 72}$ oe OR |
| :--- |
| M2 for $\frac{12.5 \times \sin (180-23-108)}{\sin 37}$ oe |
| or M1 for $\frac{\sin 37}{12.5}=\frac{\sin (180-23-108)}{T Z}$ oe |
| M3 for $r=20.5 \div\left(2+\frac{3 \times 65 \times 2 \pi}{360}\right) \mathrm{oe}$ or M2 for $20.5=2 r+\frac{3 \times 65}{360} \times 2 \pi r$ oe or M1 for $[3 \times] \frac{65}{360} \times 2 \pi r$ oe or $20.5=2 r+$ expression involving π |

\hline | 9 (a) |
| :--- |
| (b) |
| (c) |
| (d) (i) |
| (ii) | \& | $x<10$ oe |
| :--- |
| $y \geqslant 2$ oe |
| $x+3 y \leqslant 21$ oe |
| ruled broken line $x=10$ |
| ruled line $y=2$ |
| ruled line from $(0,7)$ to $(21,0)$ |
| correct region indicated cao |
| 4 |
| 20 | \& | 1 |
| :--- |
| 1 |
| B1 |
| B1 |
| B2 |
| 1 |
| 1 |
| 1 | \& | Accept $x \leqslant 9$ |
| :--- |
| Accept $y>1$ |
| Mark answer line isw |
| or ruled line $x=9$ |
| or ruled broken line $y=1$ |
| SC1 for line with negative gradient correct only at $(0,7)$ or $(21,0)$ |

\hline | 10 (a) (i) |
| :--- |
| (ii) | \& \[

$$
\begin{aligned}
& (6-2) \times 180 \text { or }(2 \times 6-4) \times 90 \\
& \text { or }(360 \div 6) \\
& (6-2) \times 180 \div 6 \text { or }(2 \times 6-4) \times 90 \div 6 \\
& \text { or } 180-(360 \div 6) \\
& 1.73 x \text { or } x \sqrt{3} \text { oe }
\end{aligned}
$$

\] \& | M1 |
| :--- |
| M1dep | \& | dep on previous M1 |
| :--- |
| M2 for $2 x \sin 60$ or $2 x \cos 30$ oe or for $\sqrt{x^{2}+x^{2}-2 \times x \times x \times \cos 120}$ or M1 for $x \sin 60$ or $x \cos 30$ oe or for $x^{2}+x^{2}-2 \times x \times x \times \cos 120$ |

\hline
\end{tabular}

Question	Answer	Marks	Part Marks
(iii) (b)	$(10-x) \sin 30$ seen oe $10+2((10-x) \sin 30)$ oe $10+10-x \text { or } 10+2 \times \frac{1}{2} \times(10-x)$ 12.7 or 12.67 to $12.68 \ldots$. nfww	M1 M1dep A1 4	dep on previous M1 with no errors or omissions seen B3 for 7.32 to 7.33 or M2 for $x=20 \div(1+1.73)$ oe or M1 for $20-x=$ their $\mathbf{(a) (i i) ~ o e ~}$
11 (a) (b) (c) (i) (ii) (iii) (iv)		1 3 1 1 1 2 1 1	B2 for 3 or 4 correct or B1 for first 2 correct If 0 scored, $\mathbf{S C 1}$ for 4 values correctly doubled FT one error or for $14+2=16=2^{4}$ B1 for each

Cambridge International Examinations
Cambridge International General Certificate of Secondary Education

MATHEMATICS
0580/41
Paper 4 Paper 4 (Extended)
October/November 2016
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

[^0]| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | Cambridge IGCSE - October/November 2016 | 0580 | 41 |

Abbreviations

cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied

Question	Answer	Mark	Part marks
1 (a) (i)	60 and 45	2	M1 for $105 \div(4+3)$
(ii)	117.6[0] final answer	2	M1 for 105×1.12 oe
(iii)	125	3	M2 for $105 \div\left(1-\frac{16}{100}\right)$ oe or M1 for 105 seen associated with 84%
(b)	30.68 final answer	6	B5 for 30.7[0] or 30.68... or B4 for 905 to 906 and 875 or 405 to $406 \ldots$ and 375 OR
			M1 for $500 \times\left(1+\frac{2}{100}\right)^{30}[-500]$ oe M1 for $[500+] \frac{500 \times 2.5 \times 30}{100}$ B1 for 905 to 906 or 875 or 405 to 406 or 375
(c)	480 or 479.8 to $479.9 \ldots$	3	M2 for $1469 \div\left(1+\frac{3.8}{100}\right)^{30}$ oe
			or M1 for $P \times\left(1+\frac{3.8}{100}\right)^{30}=1469$ oe
(d)	$6.5[0]$ or $6.500 \ldots$	3	M2 for $\sqrt[11]{\frac{120150}{60100}}[\times 100-100]$ oe
			or M1 for $60100 \times()^{n}=120150$ oe where $n=5$ or 11 or 55

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	41

\begin{tabular}{|c|c|c|c|}
\hline Question \& Answer \& Mark \& Part marks \\
\hline \begin{tabular}{l}
(a) (i) \\
(ii) \\
(iii) \\
(iv) \\
(v) \\
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
15 to 15.2 \\
10.8 to 11 \\
9 to 9.2 \\
10 \\
24 \\
16.75 nfww \\
Fully correct histogram
\end{tabular} \& \begin{tabular}{l}
1 \\
1FT \\
1 \\
2 \\
4
\end{tabular} \& \begin{tabular}{l}
FT 20 - their (a)(ii) \\
B1 for 176 written \\
isw attempted time conversion after correct answer \\
M1 for \(5,12.5,17.5,25,45\) soi \\
M1 for \(\Sigma f x\) \\
M1 dep for their \(\Sigma f x \div 200\) \\
B1 for each correct block \\
If zero scored, SC1 for frequency densities of \(9.6,12,2.6\) and 0.6 seen
\end{tabular} \\
\hline 3 (a) (i) \& \begin{tabular}{l}
51.7 or 51.69 to \(51.70 \ldots\) \\
1.96 or 1.957 to 1.958 ...
\end{tabular} \& 4

4

4 \& | M3 for $\left(2 \times \frac{2}{3} \times \pi \times 13^{3}+\pi \times 13^{2} \times 25\right) \times 2.3[\div 1000] \text { oe }$ |
| :--- |
| or SC3 for figs 517 or figs 5169 to $5170 \ldots$ or M2 for $\left(2 \times \frac{2}{3} \times \pi \times 13^{3}+\pi \times 13^{2} \times 25\right)$ oe OR |
| M1 for $2 \times \frac{2}{3} \times \pi \times 13^{3}$ seen or $\pi \times 13^{2} \times 25$ seen |
| M1 indep for their volume $\times 2.3 \div 1000$ |
| M3 for $\left(2 \times 2 \times \pi \times 13^{2}+\pi \times 2 \times 13 \times 25\right)\left[\div 100^{2}\right] \times 4.7 \text { oe }$ |
| or SC3 for figs 196 or figs 1957 to 1958... |
| M2 for $\left(2 \times 2 \times \pi \times 13^{2}+\pi \times 2 \times 13 \times 25\right)$ oe OR |
| M1 for $2 \times 2 \times \pi \times 13^{2}$ seen or $\pi \times 2 \times 13 \times 25$ seen |
| M1indep for their area divided by 100^{2} soi |

\hline
\end{tabular}

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	41

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	41

Question	Answer	Mark	Part marks
$\begin{array}{rrr}5 & \text { (a) } & \text { (i) } \\ & & \text { (ii) } \\ & \text { (b) } & \text { (i) }\end{array}$	Image at (-2, - 4), (4, -4), (4, 0)	2	$\mathbf{S C 1}$ for translation $\binom{-4}{k}$ or $\binom{k}{-8}$
	8.94 or 8.944...	2	M1 for $\sqrt{(-4)^{2}+(-8)^{2}}$ or $\sqrt{4^{2}+8^{2}}$
	Enlargement [factor] 0.5 oe [centre] $(0,0)$ oe	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
	$\left(\begin{array}{cc}0.5 & 0 \\ 0 & 0.5\end{array}\right)$ oe	2FT	FT their scale factor from (b)(i) dep on enlargement and centre $(0,0)$
			B1FT for one row or column
(iii)	0.25 or $\frac{1}{4}$	1FT	Strict FT their matrix but not for identity matrix
6 (a)	126 or 126.4 to 126.5	3	M2 for $\sqrt{220^{2}-180^{2}}$ oe or M1 for $B C^{2}+180^{2}=220^{2}$ oe
(b)	99.9 or 99.86 to 99.87	4	M2 for $180^{2}+170^{2}-2 \times 180 \times 170 \cos 33$ or M1 for $\cos 33=\frac{180^{2}+170^{2}-C D^{2}}{2 \times 180 \times 170}$ A1 for 9970 or 9973 to 9974
(c)	92.6 or 92.58 to 92.59	2	M1 for $\frac{\text { dist }}{170}=\sin 33$ oe
(d)	115.1 or 115.0 to 115.1	3	M1 for $\cos =\frac{180}{220}$ oe M1dep for $47+33+$ their angle $B A C$
(e)	19700 or 19708 to 19720	3	M1 for $0.5 \times 180 \times 170 \times \sin 33$ oe or $0.5 \times 180 \times$ their (c) oe M1 for $0.5 \times 180 \times$ their (\mathbf{a}) oe or $0.5 \times 180 \times 220 \times \sin ($ their $B A C)$ oe

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	41

\begin{tabular}{|c|c|c|c|}
\hline Question \& Answer \& Mark \& Part marks \\
\hline \begin{tabular}{l}
\(7 \quad\) (a) \\
(b) (i) \\
(ii) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\(0.7,0.1\) oe correctly placed \\
\(0.2,0.8\) oe correctly placed \\
0.44 nfww oe \\
If late at first two stations then certain to be late at station \(C\) oe
\end{tabular} \& \begin{tabular}{l}
3 \\
1FT
\end{tabular} \& \begin{tabular}{l}
M2 for 1 -their \(0.7 \times\) their 0.8 \\
or for \(0.3+\) their \(0.7 \times\) their 0.2 oe \\
or M1 for their \(0.7 \times\) their 0.8 \\
or for \\
two of \(0.3 \times 0.9,0.3 \times\) their 0.1 , \\
their \(0.7 \times\) their 0.2 \\
FT \(250 \times\) their \((\mathbf{b})(\mathbf{i})\) \\
Indication of certain event (allow 1 or \(100 \%\) probability or sure) at third station if late at first two stations
\end{tabular} \\
\hline \begin{tabular}{l}
8 (a) \\
(b) (i) \\
(ii) \\
(iii) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\(\frac{323}{x}+\frac{323}{x+2}=36\) oe three term equation
\[
323(x+2)+323 x=36 x(x+2) \text { oe }
\] \\
or \(\frac{323 x+646+323 x}{x(x+2)}=36 \mathrm{oe}\)
\[
\begin{aligned}
\& 36 x^{2}-574 x-646=0 \\
\& 18 x^{2}-287 x-323=0
\end{aligned}
\] \\
17,19 \\
\((\ldots \ldots .+19)(\ldots \ldots \ldots-17)\) \\
\(17,-\frac{19}{18}\) oe \\
11 cao
\end{tabular} \& B2
M1

A1

1

2 \& | B1 for $\frac{323}{x}$ seen oe or $\frac{323}{x+2}$ seen oe |
| :--- |
| i.e. for clearing the fractions (or all still over common denominator) or reducing the two algebraic fractions to one fraction and expanding the brackets in the numerator |
| answer reached without any omissions or errors with at least one intermediate line with brackets expanded after M1 |
| SC1 for $(\ldots \ldots .+a)(\ldots \ldots \ldots+b)$ where a, b are integers and $a b=-323$ or $a+18 b=-287$ |
| FT their (b)(ii) |

\hline
\end{tabular}

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	41

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/42
Paper 4 Paper 4 (Extended)
October/November 2016
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	$\mathbf{0 5 8 0}$	$\mathbf{4 2}$

Abbreviations

cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied

Question	Answer	Mark	Part marks
1 (a) (i)	11054.25 final answer	2	M1 for $18000 \times\left(1-\frac{15}{100}\right)^{3}$ oe
(ii)	16500	3	M2 for $14025 \div\left(1-\frac{15}{100}\right)$ oe or M1 for recognition of 14025 as 85% soi
(b)	260 final answer	2	M1 for $P\left(1+\frac{5}{100}\right)^{2}=286.65$ oe
(c) (i)	6.18	3	M2 for $\frac{224.72-200}{200 \times 2} \times 100$ oe or $\frac{1}{2}\left(\frac{224.72}{200} \times 100-100\right)$ or M1 for $\frac{200 \times r \times 2}{100}$ oe or $\frac{224.72-200}{200 \times 2}$ or $\frac{224.72}{200} \times 100-100$ soi by 12.36 If zero scored, SC1 for 56.18 or 56.2 as final answer
(ii)	6	3	M2 for $\sqrt{\frac{224.72}{200}}$ or $\sqrt{\frac{224.72}{2}}$ soi by 1.06 or 106 or 10.6 or M1 for $200\left(1+\frac{r}{100}\right)^{2}=224.72 \mathrm{oe}$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	42

Question	Answer	Mark	Part marks
2 (a) (b) (c) (i) (ii) (d) (i) (ii)	$\begin{aligned} & 1 \\ & 1 \\ & \text { Fully correct graph } \\ & \\ & -1<\text { ans }<-0.8 \\ & 1.25<\text { ans }<1.45 \\ & 2.5<\text { ans }<2.6 \\ & -0.7<\text { ans }<-0.5 \\ & y=1 \text { to } 1.1 \text { oe } \\ & y=-0.4 \text { to }-0.33 \text { oe } \\ & -0.4 \text { to }-0.33 \text { oe } \end{aligned}$	1 1 4 1 1 2 1FT 1FT 1FT	B3FT for 6 or 7 points plotted or B2FT for 4 or 5 points plotted or B1FT for 2 or 3 points plotted M1 for evidence of $y=-x$ or $\frac{x^{3}}{3}-x^{2}+1=-x$ FT only if a clear maximum point FT only if a clear minimum point Correct or FT their graph
(a) (b) (c)	$\begin{aligned} & \frac{240 \sin 85}{\sin 50} \\ & 312 \text { or } 312.1 \ldots \\ & \frac{1}{2} \times 180 \times 240 \times \sin A=12000 \end{aligned}$ 33.748 to 33.749 $328 \text { or } 328.3 \text { to } 328.5$	M2 B1 M1 A2 5	or M1 for $\frac{\sin 50}{240}=\frac{\sin 85}{A B}$ oe A1 for $\sin =\frac{24000}{43200}$ or better or 0.555 or 0.556 or 0.5 or 0.5555 to 0.5556 B1 for [angle $A=$] 78.75 seen M2 for $\begin{aligned} & 180^{2}+(\text { their } A B)^{2}-2 \times 180 \times \text { their } A B \times \cos 78.75 \\ & \text { or M1 for } \cos 78.75=\frac{180^{2}+(\text { their } A B)^{2}-x^{2}}{2 \times 180 \times(\text { theirAB })} \end{aligned}$ A1 for 107800 to 107900
(d) (i) (ii)	108.75 or 108.7 or 108.8 288.75 or 288.7 or 288.8	$\begin{gathered} 1 \\ 2 \mathrm{FT} \end{gathered}$	FT $180+$ their $\mathbf{(d) (i)}$ M1 for $180+$ their $\mathbf{(d) (i)}$ or $360-(180-\operatorname{their}(\mathbf{d})(\mathbf{i}))$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	42

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	42

Question	Answer	Mark	Part marks
5 (a) (i)	$\begin{aligned} & \frac{3}{4}, \frac{1}{4} \\ & \frac{7}{8}, \frac{1}{8}^{8} \end{aligned}$	2	B1 for any 2 correct
(ii)	$\frac{21}{32}$ oe	2	M1 for $\frac{7}{8} \times \frac{3}{4}$ oe
(iii)	$\frac{441}{1024} \text { oe }$	2FT	M1 for $\left(\frac{7}{8} \times \frac{3}{4}\right)^{2}$ or their $((\mathbf{a})(\mathrm{iii}))^{2}$ oe
(b)	175	2	M1 for $200 \times \frac{7}{8}$
(c)	2400	2	M1 for $1575 \div \operatorname{their} \mathbf{(a)} \mathbf{(i i)}$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	42

Question	Answer	Mark	Part marks
6 (a) $\begin{array}{rr}\text { (i) } \\ & \\ & \text { (ii) } \\ & \\ & \text { (iii) }\end{array}$	1.32	2	M1 for $0.8 \times 1.5 \times 1.1$
	0.725 or 0.7246 to $0.7247 \ldots$	2	$\mathbf{M 1}$ for $\pi r^{2} \times 0.8=$ their $(\mathbf{a})(\mathbf{i})$ or $\pi r^{2}=1.5 \times 1.1$ oe
	0.513 to 0.518 nfww	5	$\begin{aligned} & \text { M1 for } \\ & 2(1.5 \times 1.1+1.5 \times 0.8+1.1 \times 0.8) \end{aligned}$
			M1 for [$2 \times$] $\pi \times(\text { their }(\mathbf{a})(\mathbf{i i i}))^{2}$
			M2 for $\pi \times 2 \times($ their (a)(ii) $) \times 0.8$ or M1 for $\pi \times 2 \times($ their (a)(ii) $)$
(b) (i)	$x+y \geqslant 9$ oe	1	
	$y \geqslant 2$ oe	1	If zero scored, $\mathbf{S C 1}$ for $x+y>9$ and $y>2$
(ii)	Fully correct diagram with unwanted region shaded	4	B1 for $2 x+3 y=24$ ruled
			B1 for $x+y=9$ ruled
			B1 for $y=2$ ruled
(iii)		1	
		1	If zero scored, $\mathbf{S C 1}$ for $2 x+3 y$ evaluated from integers

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	42

7 (a)	54.50 final answer	2	B1 for 54.495 to 54.496 or 54.5 or M1 for $200 \div 3.67$
(b) (i)	$\frac{1000}{x(x+1)}$ final answer	3	M1 for $1000(x+1)-1000 x$ M1 for denominator $x(x+1)$
(ii)	$\begin{aligned} & \frac{1000}{x}-\frac{1000}{x+1}=4.5[0] \mathrm{oe} \\ & \text { or } \frac{1000}{x(x+1)}=4.5 \end{aligned}$	M1	Allow their (b)(i) for first M1 only for a single fraction
	$\begin{aligned} & 1000=4.5 x(x+1) \\ & 4.5 x^{2}+4.5 x-1000=0 \end{aligned}$	M1dep	Correctly multiplying by algebraic denominator
	$9 x^{2}+9 x-2000=0$	A1	Equation reached without any errors or omissions and at least one step after clearing the denominators of the fractions still with brackets included
(iii)	$\frac{-9 \pm \sqrt{9^{2}-4(9)(-2000)}}{2(9)}$	2	B1 for $\sqrt{9^{2}-4(9)(-2000)}$
			If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ then B1 for $p=-9$ and $r=2(9)$
	$\begin{array}{\|r} -15.42 \\ 14.42 \\ \hline \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	SC1 for answers -15.4 or -15.42 to -15.41 and 14.4 or 14.41 to 14.42 or for - 14.42 and 15.42 or -15.42 and 14.42 seen but not final answer
			Answers without working only score B1, B1 or SC1
(iv)	69.34 to 69.37 final answer must be 2 dp	2FT	FT $1000 \div$ their positive x with final answer rounded up or down to 2 dp or M1 for $1000 \div$ their positive x

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	42

8 (a) (b) (c) (d)	$\begin{aligned} & {[u=] 80} \\ & {[v=] 160} \end{aligned}$ 6.24 or 6.244 to 6.245 $5.05 \text { or } 5.052 \ldots$ 4 nfww	1 3 2 4	M2 for $\sqrt{8^{2}-5^{2}}$ oe or M1 for $l^{2}+5^{2}=8^{2}$ oe or $\mathbf{B 1}$ for suitable right angled triangle drawn with 5 on correct side M1 for $\frac{4.8}{2.5}=\frac{9.7}{M N}$ oe M3 for $\left[x^{n}\right](x+1)=4 \times \frac{5}{12}\left[x^{n}\right](x-1)$ oe, $n=1,2$ or 3 or M2 for $\frac{[x](x+1)}{\frac{5}{12}[x](x-1)}=\left(\frac{2[x]}{[x]}\right)^{2}$ oe or M1 for 2^{2} or $\left(\frac{1}{2}\right)^{2}$ soi
(i) (ii) (b) (i) (ii) (iii) (iv)	1.5 oe $\frac{3}{y-2}$ oe final answer -3 65536 final answer -6 3	1 3	M1 for correct removal of fraction M1 for collection of terms in x and factorises OR M1 subtracts 2 from both sides M1 multiplies by x to remove fraction and M1 for correct division by expression of the form $a y+b, a$ and $b \neq 0$ B1 for $\mathrm{h}(16)$ oe e.g. $\mathrm{h}\left(2^{4}\right)$ M1 for $2-x=2^{3}$ oe
10 (a) (b) (c)	7.5 5 16.8 or $16.80 \ldots$	2 3 3	M1 for $3 x+x+3 x+x=60$ oe B2 for $3 x+4 x+5 x[=60]$ or better or M1 for $(3 x)^{2}+(4 x)^{2}$ oe M2 for $x+x+\frac{90}{360} \times \pi \times 2 \times x \quad[=60]$ oe or M1 for $\frac{90}{360} \times \pi \times 2 \times x$ oe

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

MATHEMATICS
 0580/43

Paper 4 (Extended)
October/November 2016
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

[^1]| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | Cambridge IGCSE - October/November 2016 | 0580 | 43 |

Abbreviations

cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	43

\begin{tabular}{|c|c|c|c|}
\hline Question \& Answer \& Mark \& Part marks \\
\hline \begin{tabular}{l}
2 (a) \\
(b) \\
(c) \\
(d) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
-4.5 and 10.5 \\
Correct curve \\
5 \\
Line \(y=15-3 x\) ruled and
\[
\begin{gathered}
-0.4 \text { to }-0.31 \\
0.35 \text { to } 0.45 \\
2.2 \text { to } 2.3
\end{gathered}
\]
\[
\begin{aligned}
\& {[a=] 6} \\
\& {[b=]-14} \\
\& {[c=] 0}
\end{aligned}
\]
\end{tabular} \& 5

1
1
4

3 \& | B1 for each value |
| :--- |
| B4 for correct curve with branches joined OR |
| B3 FT for 9 or 10 points |
| or B2 FT for 7 or 8 points |
| or B1 FT for 5 or 6 points |
| and |
| B1 independent for one branch on each side of the y-axis and not touching or crossing the y-axis |
| B3 for correct line and 2 correct values or B2 for correct line or M1 for ruled line with gradient -3 or through $(0,15)$ |
| or SC2 for no/wrong line and three correct values or SC1 for no/wrong line and two correct values or for correct freehand line |
| B2 for $6 x^{3}-14 x^{2}+2=0$ oe or |
| M1 for correct removal of denominator or collection of terms on one side |

\hline | 3 (a) |
| :--- |
| (b) |
| (c) |
| (d) | \& | 2.25 oe |
| :--- |
| $12 x^{2}+x y-6 y^{2} \quad$ final answer | \& \[

2

\] \& | M1 for $8 x+4 x=22+5$ or better |
| :--- |
| M1 for $6 x-2 x \geqslant 14$ or better |
| M1 for $x(x+3)-7(x+3)$ or $x(x-7)+3(x-7)$ |
| or for $(x+a)(x+b)$ where $a b=-21$ or $a+b=-4$ |
| M2 for $12 x^{2}+9 x y-8 x y-6 y^{2}$ |
| or |
| M1 for any two of the four terms correct |

\hline | 4 (a) |
| :--- |
| (b) |
| (c) |
| (d) | \& | Triangle drawn at $(-4,3), \quad(-1,3), \quad(-1,4)$ |
| :--- |
| Triangle drawn at $(1,7),(1,6),(4,6)$ |
| Triangle drawn at $(2,3),(2,1),(8,1)$ |
| Rotation 90° clockwise oe $(7,4)$ | \& \[

2

\] \& | SC1 for correct reflection in $x=k$ or $y=1$ |
| :--- |
| SC1 for translation by $\binom{-2}{k}$ or $\binom{k}{3}$ |
| M1 for two correct vertices or SC1 for correct enlargement about the wrong centre |
| Accept -90° |

\hline
\end{tabular}

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	43

Question	Answer	Mark	Part marks
5 (a) (b) (c) (d) (e)	$\begin{aligned} & \frac{1}{64} \\ & \frac{63}{64} \\ & \frac{30}{64} \text { oe } \\ & \frac{7}{64} \\ & \frac{24}{64} \text { oe } \end{aligned}$	2 1FT 2 3	M1 for $\frac{1}{8} \times \frac{1}{8}$ FT 1 - their (a) M1 for $[2 \times] \frac{3}{8} \times \frac{5}{8}$ oe M2 for $\frac{1}{8} \times \frac{1}{8}+\frac{1}{8} \times \frac{3}{8}+\frac{3}{8} \times \frac{1}{8}$ oe or M1 for identifying combinations required, $(8,8)$ and $(8,6)$ and $(8,5)$ or identifying 6 out of the 7 possible outcomes M2 for $\frac{1}{8} \times \frac{7}{8}+\frac{3}{8} \times \frac{4}{8}+\frac{2}{8} \times \frac{2}{8}+\frac{1}{8} \times \frac{1}{8}$ oe or $\frac{7}{8} \times \frac{1}{8}+\frac{6}{8} \times \frac{1}{8}+\frac{4}{8} \times \frac{2}{8}+\frac{1}{8} \times \frac{3}{8}$ oe or M1 for the sum of any two correct products from above oe isw
6 (a) (b)	$[\cos A B L=] \frac{40^{2}+61.1^{2}-92.1^{2}}{2 \times 40 \times 61.1}$ 130.11... [0]59.5 or 59.50 to 59.511	M2 A2	M1 for correct implicit version A1 for $[\cos A B L=]-0.644 \ldots$ or $-\frac{7873}{12220}$ or $-\frac{3149.2}{4888}$ M2 for $\frac{40 \sin 130.1}{92.1} \quad$ or $\frac{61.1 \sin 130.1}{92.1}$ or M1 for $\frac{\sin A}{40}=\frac{\sin 130.1}{92.1}$ or $\frac{\sin L}{61.1}=\frac{\sin 130.1}{92.1}$ and A1 for 19.39 to $19.4 \ldots$ or 30.48 to $30.49 \ldots$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	43

Question	Answer	Mark	Part marks
(c)	1h 50min	5	M2 for $[B C=] 2 \times 40 \times \cos (180-130.1) \quad$ oe or M1 for $\frac{x}{40}=\cos (180-130.1) \quad$ oe OR M2 for $[B C=] \sqrt{ }\left\{40^{2}+40^{2}-2 \times 40 \times 40 \cos (\right.$ their 80.2$\left.)\right\}$ or M1 for correct implicit version OR M2 for $[B C=] \frac{40 \sin (\text { their } 80.2)}{\sin 49.9}$ or M1 for correct implicit version and M1 for $\frac{\text { their } B C}{28}$ A1 for $1.84[0 \ldots]$ to 1.841
(a) (i) (ii)(a) (ii)(b) (b) (c)	$6000 \quad[7600] \quad 10200 \quad 4200$ True, median price is lower False, A's UQ <13600 oe 11025 323.25 nfww	1 1FT 4	B1 for 6000 or 10200 If B0 then B1FT for their (UQ - LQ) No inclusion of other statistic FT their UQ in (a)(i) Listed values are in thousands M1 for 3, 7, 9, 11, 13, 18 soi M1 for $\Sigma f m \quad$ [1323] M1 (dep on second M1) for their $\Sigma \mathrm{ff} \div 120$ M2 for $9948-0.25 \times 8760$ or M1 for 0.25×8760
8 (a)	Attempt to use $18-r$ in Pythagoras' $\begin{aligned} & 144=r^{2}-324+18 r+18 r-r^{2} \\ & \text { oe } \\ & 468=36 r \text { oe } \\ & {[2 \times] \sin ^{-1}\left(\frac{12}{13}\right) \text { oe }} \end{aligned}$ $134.76 \ldots$	M1 B2 A1 M1 A1	or B1 for $324-18 r-18 r+r^{2}$ Correct simplification with no errors or $\cos =\left(\frac{13^{2}+13^{2}-24^{2}}{2 \times 13 \times 13}\right)$ or better or $[180-] 2 \times \sin ^{-1}\left(\frac{5}{13}\right)$ Not 67.4×2

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	43

Question	Answer	Mark	Part marks
(c) (i) (ii) (iii) (d)	332 or 332.1 to $332.2 \ldots$ 392 or 392.0 to $392.2 \ldots$ 15700 or 15670 to 15690 29.5 or 29.6 or 29.51 to $29.57 \ldots$	3 3 1FT 2FT	M2 for $\frac{(360-134.8)}{360} \times \pi \times 13^{2}$ or M1 for $\frac{134.8}{360} \times \pi \times 13^{2}$ M2 for $1 / 2 \times 24 \times 5+$ their $(\mathbf{c})(\mathbf{i})$ or $1 / 2 \times 13^{2} \times \sin 134.8+$ their $(\mathbf{c})(\mathbf{i})$ or M1 for $1 / 2 \times 24 \times 5$ or $1 / 2 \times 13^{2} \times \sin 134.8$ FT for answer to $40 \times$ their (c)(ii) M1 for $\pi \times 13^{2} \times h=$ their (c)(iii) or better
(b)(i)(a) (i)(b) (i)(c) (ii)	$\begin{aligned} & \binom{12}{-5} \\ & 13 \mathrm{nfww} \\ & \mathbf{b}-\mathbf{a} \\ & \frac{3}{5}(\mathbf{b}-\mathbf{a}) \quad \text { or } \frac{3}{5} \mathbf{b}-\frac{3}{5} \mathbf{a} \\ & \frac{1}{5}(2 \mathbf{a}+3 \mathbf{b}) \\ & \text { or } \frac{2}{5} \mathbf{a}+\frac{3}{5} \mathbf{b} \\ & \text { final answer } \\ & \frac{3}{2} \text { oe } \end{aligned}$	2FT	M1 for $\binom{12}{k}$ or $\binom{k}{-5}$ M1FT for $\sqrt{\text { their } 12^{2}+\text { their }(-5)^{2}}$ FT dep on their (a) being $\binom{a}{b}$ where a, b are both non-zero FT $\frac{3}{5}$ their vector, in terms of \mathbf{a} and \mathbf{b}, in (b)(i)(a) M1 for $\mathbf{a}+$ their vector in (b)(i)(b) or any correct route

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	43

Question	Answer	Mark	Part marks
10 (a)	A: $14 \quad 3 n-1$ oe	3	B1 for 14 B2 for $3 n-1$ oe or M1 for $3 n+k$, for any k oe
	B: $-4.26-6 n$ oe	3	B1 for -4 B2 for $26-6 n$ oe or M1 for $k-6 n$, for any k oe
	C: $25 \quad n^{2}$ oe	2	B1 for 25 B1 for n^{2} oe
	D: $20 \quad n^{2}-n$ oe	2	B1 for 20 B1 for $n^{2}-n$ oe
	$\frac{n(3 n+1)}{2}=155$	M1	Accept $\frac{3 n^{2}+n}{2}=155$
	$3 n^{2}+n=310$		Intermediate step must include elimination of fraction eg $n(3 n+1)=310$
	$3 n^{2}+n-310=0$	A1	With no errors or omissions
(ii)	$10,-\frac{31}{3} \mathrm{oe}$	3	M2 for $(3 n+31)(n-10)$ [= 0] or M1 for $3 n(n-10)+31(n-10)$ or $n(3 n+31)-10(3 n+31)$ or $(3 n+a)(n+b)$ where $a b=-310$ or $a+3 b=1$
(iii)	10	1FT	FT their b(ii) if only one positive integer solution

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2016	0580	43

Question	Answer	Mark	Part marks
11	5 and $-\frac{27}{2}$ oe	\square	```M2 for \(12 \times 2(2 x-1)+(x+3)(2 x-1)=12 \times\) \(3(x+3)\) oe or M1 for a common denominator with 2 or more of the terms and B2 for \(2 x^{2}+17 x-135[=0]\) oe or B1 for \(48 x-24\) or \(2 x^{2}-x+6 x-3\) or \(36 x+108\) or \(2 x^{2}-x+54 x-27\) or \(\quad 132-12 x\) or \(37 x+111-2 x^{2}-6 x\) and M2 for \((2 x+27)(x-5)\) or their correct factors or formula or M1 for \(2 x(x-5)+27(x-5)\) or \(x(2 x+27)-5(2 x+27)\) or \((2 x+a)(x+b)\) where \(a b=-135\) or \(a+2 b=17\)```

Cambridge International Examinations
Cambridge International General Certificate of Secondary Education

MATHEMATICS
0580/41
Paper 4 (Extended)
May/June 2016
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

[^2]| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | Cambridge IGCSE - May/June 2016 | 0580 | 41 |

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Mark	Part marks
1 (a) (i) (ii) (iii) (iv) (b) (c) (d)	48 32.4[0] $\frac{13}{30}$ 24 660 663.9[0] 1.5[0]	2 1 2 3 3 2 3	M1 for $\frac{72}{3}$ M1 for $\frac{72-\text { their }(i i)-8.4}{72}$ oe M2 for $\frac{19.2}{0.8}$ oe or M1 for recognising 19.2 is 80% M2 for $\frac{550 \times 2 \times 10}{100}+550$ oe or M1 for $\frac{550 \times 2 \times 10}{100}$ oe M1 for 550×1.019^{10} oe M2 for $\sqrt[10]{\frac{638.3[0]}{550}}$ oe or M1 for $550 \times m^{10}=638.3[0]$
(a) (i) (ii) (iii) (b) (i)	Triangle drawn, vertices $(2,-4),(2,-5),(4,-4)$ Triangle drawn, vertices $(-3,4),(-3,5),(-1,4)$ Enlargement [factor] 3 [centre] $(-6,-5)$ $\left(\begin{array}{cc} 2 & 5 \\ 3 & 10 \end{array}\right)$	2 2 1 1 1 1	$\mathbf{S C 1}$ for translation $\binom{5}{k}$ or $\binom{k}{-2}$ or correct points not joined SC1 for reflection in line $y=k$ or line $x=1$ or correct points not joined

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	41

Question	Answer	Mark	Part marks
(ii) (iii) (c) (i) - \qquad (ii)	$\left(\begin{array}{ll}10 & 14 \\ 18 & 24\end{array}\right)$ final answer $\frac{1}{4}$ oe Rotation 90° [anti-clockwise] oe $(0,0)$ oe $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$	3	SC1 for one row or one column correct M2 for $1 \times 4-2 \times 3=4 \times k-3 \times 1$ or better or B1 for $1 \times 4-2 \times 3$ or $4 \times k-3 \times 1$ seen SC1 for one correct row or column
(a) (i) (ii) (iii) (iv) (b) (i) (ii) (iii)	400 350 70 170 Mid-values $40,80,125,200$ soi $\Sigma f x$ with correct frequencies and x 's in correct intervals or on boundaries of correct intervals $\div 200$ 106 nfww Correct histogram $\frac{10712}{39800}$ oe isw	1 1 1 2 M1 M1 M1(dep) A1 4	B1 for 30 seen Dependent on second M1 SC2 for correct answer without working B1 for correct widths and B1 for each rectangle of correct height at $0.8,1.6,1.6$ (up to B3) After 0 scored, SC1 for 3 correct frequency densities seen M1 for $\frac{104}{200} \times \frac{103}{199}$ oe
4 (a) (b) (i)	14137 to 14137.2 or 14139 104000 or 103600 to 103700	2	M1 for $\frac{4}{3} \times \pi \times 15^{3}$ M2 for $\pi \times 25^{2} \times 60-14140$ or M1 for $\pi \times 25^{2} \times 60$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	41

Question	Answer	Mark	Part marks
(ii) (c) (i) (ii)	52.8 or 52.75 to $52.81 \ldots$ 15.8 or $15.81 \ldots$. 3580 or 3576 to 3581 nfww	3	M1 for their (b)(i) $\div\left(\pi \times 25^{2}\right)$ or $14140 \div\left(\pi \times 25^{2}\right)$ M2 for $\left[r^{2}=\right] \frac{14140}{1 / 3 \times \pi \times 54}$ or M1 for $\frac{1}{3} \times \pi \times r^{2} \times 54=14140$ oe M1 for $(\text { their }(\mathrm{c})(\mathrm{i}))^{2}+54^{2}$ M1 for $\pi \times($ their $(\mathrm{c})(\mathrm{i})) \times \sqrt{ }\left\{(\text { their }(\mathrm{c})(\mathrm{i}))^{2}+54^{2}\right\}$ M1 for $\pi \times(\text { their }(\mathrm{c})(\mathrm{i}))^{2}$
5 (a) (b)	9 10.5 Fully correct curve	$\begin{aligned} & 1 \\ & 1 \\ & 5 \end{aligned}$	SC4 for correct curve, but branches joined B3 FT for 9 or 10 points plotted or B2 FT for 7 or 8 points plotted or B1 FT for 5 or 6 points plotted and B1 for two separate branches not touching or cutting y-axis
(c)	$\begin{array}{\|l\|} \hline 2.1 \text { to } 2.6 \\ 8.5 \text { to } 9 \end{array}$	1 1	
(d)	2, 3, 5, 7	2	SC1 for correct 4 values and no more than one extra positive integer or $\pm 2, \pm 3, \pm 5$, ± 7 or 3 correct values and no extras
(e)	(-2, - 12)	1	
(f) (i)	$20+x^{2}=x^{3}$ $x^{3}-x^{2}-20=0$	M1 A1	Multiplication by x No errors or omissions
(ii)	Fully correct curve $y=x^{2}$	2	SC1 for U - shaped parabola, vertex at origin
(iii)	2.5 to 3.5	1	
(iv)	3.[0] to 3.1 or FT their answer to (iii)	1FT	FT dep on (iii) >0

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	41

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	41

Question	Answer	Mark	Part marks
$7 \quad$ (a) (i) (ii) (iii) (b) (c)	$\begin{aligned} & \frac{1}{2} \mathbf{p} \\ & \frac{1}{2} \mathbf{p}-\frac{1}{3} \mathbf{r} \\ & \mathbf{p}+\frac{2}{3} \mathbf{r} \\ & \mathbf{r}+\frac{3}{2} \mathbf{p} \end{aligned}$	1 1 2 3	M1 for correct unsimplified answer or for correct route or for recognising $\overrightarrow{\mathrm{OU}}$ as position vector B2 for $(2 k)^{2}+([-] k)^{2}=180$ oe or M1 for $(2 k)^{2}+([-] k)^{2}$ oe
8 (a) (b) (c) (d) (e) (f)	2 17 $\frac{x-1}{2}$ oe final answer $4 x^{2}+4 x+5$ final answer $\sqrt{2}$ or 1.41 or $1.414 \ldots$.... -1	2 2 2 3 1 1	M1 for $2 x+1=1+4$ B1 for $[\mathrm{h}(3)=] 8$ soi or $2 \times 2^{x}+1$ oe M1 for $y-1=2 x$ or $\frac{y}{2}=x+\frac{1}{2}$ or $x=2 y+1$ M1 for $(2 x+1)^{2}+4$ and B1 for $\left[(2 x+1)^{2}=\right] 4 x^{2}+2 x+2 x+1$ or better
9 (a) (i) (ii)	$-\frac{1}{2} x+2 \text { oe }$ $\begin{aligned} & \frac{16}{a^{2}}\left[+\frac{0^{[2]}}{b^{2}}\right]=1 \text { or } \frac{4^{2}}{a^{2}}\left[+\frac{0^{[2]}}{b^{2}}\right]=1 \\ & \text { and } a^{[2]}=4^{[2]} \\ & {\left[\frac{0^{[2]}}{a^{2}}\right]+\frac{4}{b^{2}}=1 \text { or }\left[\frac{0^{[2]}}{a^{2}}\right]+\frac{2^{2}}{b^{2}}=1} \\ & \text { and } b^{[2]}=2^{[2]} \end{aligned}$	3 1 1	SC2 for $y=-\frac{1}{2} x+c$ oe or $\mathbf{S C 1}$ for $y=k x+2$ oe, $k \neq 0$ or M1 for [gradient $=$] $\frac{-2}{4}$ and M1 for substituting $(4,0)$ or $(0,2)$ into $y=($ their $m) x+c$

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	41

Question	Answer	Mark	Part marks
(b) (i)	1.73 or 1.732.. or $\sqrt{3}$	3	M2 for $\frac{k^{2}}{4}=\frac{3}{4}$ or better or M1 for $\frac{2^{2}}{16}+\frac{k^{2}}{4}=1$ oe
(ii)	81.8 or 81.78 to 81.79	3	M2 for $2 \times \tan ^{-1}\left(\frac{\text { their } \sqrt{3}}{2}\right)$ oe or M1 for $\tan =\frac{\text { their } \sqrt{3}}{2}$ oe
(c) (i) (ii)	8π final answer 72π final answer	$\begin{gathered} 1 \\ 2 \mathrm{FT} \end{gathered}$	FT their $(\mathrm{c})(\mathrm{i}) \times 9$ in terms of π M1 for area factor of 3^{2} or 9 or $[$ new $a]=12$, $[$ new $b]=6$

Cambridge International Examinations
Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/42
Paper 4 (Extended)
May/June 2016
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

[^3]| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | Cambridge IGCSE - May/June 2016 | 0580 | 42 |

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Mark	Part marks
(ii) (b) (i) (ii) (c) (i) (ii) (d) (i) (ii)	1245 [pm] 788 or 787.8 to 788.1 4230 [.00] 22.2 or $22.2 \ldots$ 3808 final answer 800 1130 $\$ 146.9$ [0] final answer	2 2 2 1 2 3 4 2FT	B1 for 2045 seen or 845 pm seen or [0]1 35 seen M1 for $8800 \div 11 \mathrm{~h} 10 \mathrm{mins}$ oe M1 for $2350 \div 5$ oe M1 for $2240 \times \frac{100+70}{100}$ oe M2 for $2240 \div \frac{100+180}{100}$ oe or M1 for 2240 associated with 280% M3 for $(826.5[0]-12 \times(28+6.5[0])) \div 1.25$ seen or M2 for $826.5[0]-12 \times(28+6.5[0])$ seen or M1 for $12 \times(28+6.5[0])$ seen FT their $(\mathrm{d})(\mathrm{i}) \times 0.13$ correctly evaluated If answer not exact to at least 3 sf or better M1 for their $(\mathrm{d})(\mathrm{i}) \div 10 \times 1.3$
	5 $\frac{1}{2}$ oe $\frac{5}{3}$ oe $-\frac{2}{3} \mathrm{oe}$	1 1 2 2	M1 for $2^{3 x}=2^{5}$ oe or better or SC1 for either denominator or numerator of index correct in final answer M1 for $3^{3 x}=3^{-2}$ oe or better or $\left(\frac{1}{3}\right)^{-3 x}=\left(\frac{1}{3}\right)^{2}$ or better or SC1 for $\frac{2}{3}$ or any negative index

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	42

Question	Answer	Mark	Part marks
(b)	$(y-10)(y+3)$ seen 10 and - 3 final answers	B2 B1	$\begin{aligned} & \text { B1 for } y(y-10)+3(y-10)[=0] \\ & \text { or } y(y+3)-10(y+3)[=0] \\ & \text { or for }(y+a)(y+b)[=0] \text { where } a b=-30 \\ & \text { or } a+b=-7 \\ & \text { or for } y-10[=0] \text { and } y+3[=0] \end{aligned}$
3 (a) (i) (ii) (iii) (b)	$\begin{aligned} & \text { Image at }(3,1),(5,1),(5,4),(4,4) \text {, } \\ & (4,2),(3,2) \\ & \text { Image at }(2,1),(6,1),(6,-5),(4,-5) \text {, } \\ & (4,-1),(2,-1) \\ & \text { Image at }(-1,-1),(-2,-1) \text {, } \\ & (-2,-2),(-4,-2),(-4,-3) \text {, } \\ & (-1,-3) \end{aligned}$ Enlargement [sf] 3 origin oe	2 3	SC1 reflection in $y=1$ or $x=k$ or 6 correct points not joined SC1 for other enlargement of scale factor -2 , correct size and correct orientation or 6 correct points but not joined M2 for 6 correct points shown in working or plotted correctly but not joined or M1 for $\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{cccccc} -1 & -1 & -2 & -2 & -3 & -3 \\ 1 & 2 & 2 & 4 & 4 & 1 \end{array}\right)$ or for rotation 90° [anticlockwise] centre $(0,0)$ stated B1 for each
$4 \quad$ (a) (i) (ii) (b) (c)	$-2,-0.5 \text { or }-\frac{1}{2}$ Complete correct curve $\begin{aligned} & -1.95 \text { to }-1.8 \\ & -0.4 \text { to }-0.2 \\ & 2.05 \text { to } 2.2 \end{aligned}$ Any integer k where $k \leqslant-3$	5 3 1	B1 for each SC4 for correct curves but branches joined or touching y-axis or B3FT 9 or 10 points or B2FT for 7 or 8 points or B1FT for 5 or 6 points and B1indep two separate branches not touching or crossing y-axis B1 for each

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	42

\begin{tabular}{|c|c|c|c|}
\hline Question \& Answer \& Mark \& Part marks \\
\hline \begin{tabular}{l}
(d) (i) \\
(ii)
\end{tabular} \& Correct line \(y=-5 x-2\) ruled and
\[
\begin{aligned}
\& -0.4 \text { to }-0.2 \\
\& 0.55 \text { to } 0.75
\end{aligned}
\]
\[
[a=] 5 \text { and }[b=]-2
\] \& 4

2 \& | M2 for correct ruled line or M1 for correct line but freehand or for ruled line gradient - 5 or ruled line y-intercept -2 , but not $y=-2$ and A1 for each correct solution dependent on at least M1 |
| :--- |
| If 0 scored, $\mathbf{S C 1}$ for both correct with no line drawn |
| B1 for one correct value or M1 for $x^{3}+5 x^{2}-2 x-1=0$ seen |

\hline | 5 (a) |
| :--- |
| (b) |
| (c) (i) |
| (ii) |
| (iii) |
| (d) | \& 0.05 oe

15
0.75 oe
0.135 oe
0.12 oe

0.243 oe \& \begin{tabular}{l}
$$
1
$$

2

2

3

 \&

M1 for $1-(0.2+0.3+0.45)$ oe

M1 for $0.45+0.3$ oe

M1 for 0.45×0.3 oe

M2 for $2(0.3 \times 0.2)$ oe

or M1 for 0.3×0.2 or 0.06 oe nfww

M4 for $3(0.45 \times 0.45 \times 0.2)+$

$3(0.3 \times 0.3 \times 0.45)$ oe

or M3 for $3(0.45 \times 0.45 \times 0.2)$ or

$3(0.3 \times 0.3 \times 0.45)$ oe

or M2 for $0.45 \times 0.45 \times 0.2$ and

$0.3 \times 0.3 \times 0.45$

or M1 for $0.45 \times 0.45 \times 0.2$ or

$0.3 \times 0.3 \times 0.45$ oe

or for identifying the correct 6 outcomes e.g. $1000,0010,0100,550,505,055$
\end{tabular}

\hline | 6 (a) |
| :--- |
| (b) (i) |
| (ii) | \& \[

$$
\begin{aligned}
& 3 \\
& 9900 \\
& \\
& 0.99 \text { oe }
\end{aligned}
$$

\] \& | 1 |
| :--- |
| 3 |
| 1FT | \& | M2 for $2(60 \times 35)+2(60 \times 30)+2(30 \times 35)$ oe or M1 for one correct rectangle |
| :--- |
| FT their(b)(i) $\div 10000$ |

\hline
\end{tabular}

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	42

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	42

Question	Answer	Mark	Part marks
8 (a) $\begin{aligned} & \text { (i) } \\ & \\ & \text { (ii) } \\ & \text { (iii) }\end{aligned}$	-3	2	M1 for $[g(1)=]-2$ provided not used in a product or for $5\left(\frac{4}{x-3}\right)+7$ or better
	$\frac{4}{5 x+4}$ final answer	2	M1 for $\frac{4}{5 x+7-3}$
	$\frac{4+3 x}{x}$ or $\frac{4}{x}+3$ final answer	3	M2 for $x y=4+3 x$ or $y-3=\frac{4}{x}$ or $x=\frac{4}{y}+$ 3 or $x=\frac{4+3 y}{y}$ or M1 for $x=\frac{4}{y-3}$ or $y(x-3)=4$ or $x-3=$ $\frac{4}{y}$ or $x(y-3)=4$
	2	1	
	$(5 x+7)(x-3)=4$	M1	
	$\begin{aligned} & 5 x^{2}-15 x+7 x-21=4 \text { oe } \\ & 5 x^{2}-8 x-25=0 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { A1 } \end{aligned}$	Condone omission of ' $=4$ ' for the B mark Dep on M1B1 and no errors or omissions at any stage seen
	$\sqrt{(-8)^{2}-4(5)(-25)}$ or better	B1	or for $\left(x-\frac{4}{5}\right)^{2}$ oe
	$p=-(-8)$ and $r=5 \times 2$ oe	B1	must see $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ or both or for $\frac{4}{5}+\sqrt{\left(\frac{4}{5}\right)^{2}+5}$ or $\frac{4}{5}-\sqrt{\left(\frac{4}{5}\right)^{2}+5}$
	-1.57 and 3.17	B1B1	SC1 for final answers -1.6 or -1.574 to -1.575 and 3.2 or 3.174 to 3.175 or -1.57 and 3.17 seen in working or for -3.17 and 1.57 as final ans
9 (a)	19[.0] or 18.97.. nfww	3	M2 for $\sqrt{(4--2)^{2}+(13--5)^{2}}$ oe or M1 for $(4--2)^{2}+(13--5)^{2}$ oe

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	42

Cambridge International Examinations
Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/43
Paper 4 (Extended)
May/June 2016
MARK SCHEME
Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

[^4]| Page 2 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
| | Cambridge IGCSE - May/June 2016 | 0580 | 43 |

Abbreviations

cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
nfww not from wrong working
soi seen or implied

Question	Answer	Mark	Part marks
1 (a) (i) (ii) (b) (c)	36600 $16 \frac{2}{3}$ or 16.7 [16.66 to 16.67] 1231708 final answer nfww 27.2[0] nfww	3	M2 for $6100 \div 2 \times(2+7+3)$ oe or M1 for $6100 \div 2$ soi M4 for $5964 \times 15+28400 \times 35+8236 \times 18$ or M3 for 5964×15 and 28400×35 or for $5964 \times 15+42600 \times$ their decimal $\frac{2}{3}$ $\times 35+(42600-5964-42600 \times$ their decimal $\left.\frac{2}{3}\right) \times 18$ or M2 for 5964×15 or 28400×35 or for $42600 \times$ their decimal $\frac{2}{3} \times 35$ or M1 for 0.14×42600 or $42600 \div 3 \times 2$ M2 for $23.80 \div 0.7$ oe or M1 for 23.80 associated with 70% oe and M2 for their $(23.80 \div 0.7) \times 0.8$ or M1 for their $(23.80 \div 0.7) \times 0.2$
2 (a) (b) (i) (ii)	$x>\frac{12}{5}$ oe final answer $(y-6)(x+3)$ final answer $8(x+3 y)(x-3 y)$ final answer	2 2 3	B1 for $\frac{12}{5}$ oe in answer with incorrect or no sign or M1 for one correct step e.g. $5 x>9+3$ M1 for $y(x+3)-6(3+x)$ or $x(y-6)+3(y-6)$ M2 for $2(2 x+6 y)(2 x-6 y)$ or $(8 x+24 y)(x-3 y)$ or $(8 x-24 y)(x+3 y)$ or $4(2 x-6 y)(x+3 y)$ or $4(2 x+6 y)(x-3 y)$ or $(4 x-12 y)(2 x+6 y)$ or $(4 x+12 y)(2 x-6 y)$ or M1 for $8\left(x^{2}-9 y^{2}\right)$ or $(x+3 y)(x-3 y)$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	43

Question	Answer	Mark	Part marks
(c)	$r=\frac{1}{p+7}$ final answer nfww	4	M1 removes fraction correctly M1 collects terms in r M1 removes r as a factor from their terms in r M1dep divides by bracket to leave r and denominator simplified
3 (a) (i) (ii) (iii) (b) (i) (ii) (iii) (c) (d)	10 -3.4 to -3.3 and -0.4 to -0.3 and 1.6 to 1.7 $\begin{aligned} & y=-2.3 \text { to }-2.1 \mathrm{oe} \\ & y=10 \text { to } 10.1 \mathrm{oe} \end{aligned}$ $2,-1,4$ Fully correct curve drawn -3.4 to -3.2 and 1.8 to 1.9 3.2 oe	3 2 3 4 2 2FT	B1 for each B1 for each B1 for each SC3 for correct curves but branches joined or touching y-axis or B2FT for 8 or 9 correct plots or B1FT for 6 or 7 correct plots and B1 indep for two separate branches not touching or crossing y - axis B1 for each FT $2 \div$ their $(\mathrm{a})(\mathrm{i})+3$ M1 for $\mathrm{f}(-2)=10$ or their (a)(i) used
$4 \text { (a) (i) }$ (ii) (b)	$\begin{aligned} & 0.0025 \text { or } \frac{1}{400} \text { oe } \\ & 0.9975 \text { or } \frac{399}{400} \text { oe } \\ & 0.171 \text { or } 0.1714 \text { to } 0.1715 \text { or } \frac{6859}{40000} \end{aligned}$	1FT	M1 for 0.05^{2} oe FT for 1 - (their (a)(i)) oe M2 for $4\left(0.05 \times 0.95^{3}\right)$ oe M1 for 0.05×0.95^{3} oe seen or for the 4 combinations correctly identified

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	43

Question	Answer	Mark	Part marks
(c) (d) (i) (ii)	376 nfww 16 33	2	M1 for midpoints soi (condone 1 error or omission) $(225,275,325,375,425,475)$ and M1 for use of $\Sigma f x$ with x in correct interval including both boundaries (condone 1 further error or omission) and M1 (dependent on second M) for $\Sigma f x \div 200$ M1 for $0.8 \times 50+0.26 \times 100$
$5 \quad \text { (a) } \quad \text { (i) }$ (ii) (b) (c)	275 095 464.66 to 464.67 [$=464.7$] 44.9 or 44.86 to $44.87 \ldots$	2FT	M1 for 360-40-45 oe FT their (a) - 180 M1 for their (a) - 180 oe or $180-40-45$ M2 for $510^{2}+720^{2}-2 \times 510 \times 720 \cos 40$ or M1 for correct implicit equation A1 for 215900 to 215920 M2 for $\frac{510 \sin (40)}{464.7}$ or M1 for correct implicit equation
6 (a) (i) (ii) (iii) (iv) (b) (i) (ii)	Correct image $(2,-5)(4,-5)(4,-1)$ Correct image $(-2,1)(-6,1)(-6,-1)$ Translation by $\binom{1}{9}$ Enlargement [SF] - $1 / 2$ oe [Centre] $(2,1)$ $\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right)$ Reflection $x=0 \mathrm{oe}$	2 2 1 1 2 1	SC1 for reflection in $y=0$ or 3 correct points not joined SC1 for rotation 90 clockwise any centre or 3 correct points not joined B1 for each B1 for one correct row or column but not the identity matrix

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	43

Question	Answer	Mark	Part marks
7 (a) (i)	$\frac{12}{x-1}-\frac{10}{x}=0.5 \mathrm{oe}$ $12 x-10(x-1)=0.5 x(x-1)$ or better Brackets expanded $x^{2}-5 x-20=0$ with no errors or omissions seen	M2 M1 A1	M1 for $\frac{12}{x-1}$ or $\frac{10}{x}$ FT $\frac{10}{x}-\frac{12}{x-1}=0.5$ only Dep on M3 and brackets expanded
(ii) (iii) (b) (i) (ii)	$\sqrt{(-5)^{2}-4(1)(-20)}$ or better $p=-(-5), r=2(1)$ or better $-2.62,7.62$ final answers 1 [hr] 49 [mins] 2.5 1312.5 final answer	B1 B1 B1B1 2FT 1 3	Seen anywhere or $\left(x-\frac{5}{2}\right)^{2}$ oe Must be in the form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ or for $\frac{5}{2}+\sqrt{\left(\frac{5}{2}\right)^{2}+20}$ or $\frac{5}{2}-\sqrt{\left(\frac{5}{2}\right)^{2}+20}$ SC1 for -2.6 or -2.623 to -2.624 and 7.6 or 7.623 to 7.624 or -2.62 and 7.62 seen in working or answers 2.62 and -7.62 FT $12 \div($ their + ve root -1$)$ or $0.5+10 \div($ their 7.62$)$ in hrs and mins, rounded to nearest min M1 for $12 \div($ their + ve root -1$)$ or $0.5+10 \div$ (their 7.62) M2 for any complete correct method e.g $25 \times 10 \div 2+45 \times 25+5 \times 25 \div 2$ M1 for any correct method for a relevant area under the graph
(ii) (iii) (iv) (v)	Not possible $\left(\begin{array}{cc}4 & 0 \\ -2 & 10 \\ 6 & -8\end{array}\right)$ final answer $\left(\begin{array}{cc}14 & 35 \\ -8 & -20\end{array}\right)$ final answer (-6) final answer $\left(\begin{array}{ll}-2 & 18 \\ -6 & 22\end{array}\right)$ final answer	2 2 2	M1 for one correct column or row M1 for 14 - 20 M1 for one correct column or row

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	43

Question	Answer	Mark	Part marks
(b)	$\frac{1}{8}\left(\begin{array}{cc}5 & -3 \\ 1 & 1\end{array}\right)$ or better isw	2	B1 for $k\left(\begin{array}{cc}5 & -3 \\ 1 & 1\end{array}\right)$ seen or implied, $k \neq 0$ or $\frac{1}{8}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ seen
9 (a) (b)	270 or 270.17 to 270.22 518 or 517.6 to 517.8 nfww	3 6	M2 for $\frac{360-145}{360} \times \pi 12^{2}$ oe or B1 for 215 seen or M1 for $\frac{\theta}{360} \times \pi 12^{2}$ used B4 for vertical height $=9.62$ to 9.63 or $\mathbf{B 3}$ for radius $=7.166$ to 7.17 or B2 for length of sector $=45$.[0] or 45.02 to 45.04 or M1 for $\frac{360-145}{360} \times 2 \times \pi \times 12 \mathrm{oe}$ or for $\sqrt{12^{2}-\text { their radius }^{2}}$ and M1 indep for $\frac{1}{3} \pi \times$ their radius ${ }^{2} \times$ their h $(h \neq 12$ or $r \neq 12)$
10 (a) (b) (i) (ii) (c)	$10 \quad 15$ 1521 3548 3 143 $a=\frac{1}{2}$ oe $b=\frac{3}{2}$ oe nfww	6 2 1FT 5	B1 for each correct entry M1 for any correct substitution in $n^{2}+4 n+p$ $=$ number of tiles $\operatorname{eg} 2^{2}+4(2)+p=15$ FT $140+$ their (b)(i) B1 for a correct simplified equation e.g. $a+b+1=3,4 a+2 b+1=6$, $9 a+3 b+1=10$ etc B1 for a $2^{\text {nd }}$ correct simplified equation M1 for correctly eliminating one variable for their equations in a and b A1 for $a=\frac{1}{2}$ nfww A1 for $b=\frac{3}{2}$ nfww

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2016	0580	43

Question	Answer	Mark	Part marks	
(d) (i)	171		2FT	
			FT their $a \times 17^{2}+$ their $b \times 17+1$ M1 for their $a \times 17^{2}+$ their $b \times 17+1$	
	(ii)	673		FFT
FT their $(d)(i) \times 4-11$				

MARK SCHEME for the March 2016 series

0580 MATHEMATICS

0580／42
Paper 4 （Extended），maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE ${ }^{\circledR}$ and Cambridge International A and AS Level components．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0580	42

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Qu.	Answers	Mark	Part Marks
1 (a) (b) (c) (d)	$\frac{8}{8+15+9} \times 640$ oe 300 and 180 10 nfww $\frac{7}{24}$	1 2 2 3	With no errors seen B1 for each or SC1 for answers reversed M1 for $160 \div 15.25$ implied by 10.5 or $10.49 \ldots$ nfww M1 for $\frac{3}{8}+\frac{1}{3}$ oe M1dep on previous M1 for $1-$ their $\left(\frac{3}{8}+\frac{1}{3}\right)$ oe
2 (a) (b) (c) (d)	Correct perpendicular bisector of $A B$ with 2 pairs of correct arcs isw Correct angle bisector at A with two pairs of correct arcs isw Circle centre E radius 5 cm isw	2 2 2FT 2	B1 for accurate with no/wrong arcs or M1 for correct intersecting arcs with no or wrong line B1 for accurate with no/wrong arcs or M1 for two pairs of correct arcs with no or wrong line FT circle centre their E radius 5 cm provided (a) and (b) attempted M1 for $250 \div 50$ oe soi e.g. from arc If 0 scored $\mathbf{S C} 1$ for circle centre their E cao B1 for each If $\mathbf{0}$ scored, SC1 for two 'correct' regions but in part (c), centre correct but radius incorrect

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0580	42

Qu.	Answers	Mark	Part Marks
(ii) (iii) (iv) (b) (i) (ii) (iii)	46 11 $\frac{7}{19}$ oe $\begin{aligned} & \frac{9}{200} \text { or } 0.045 \\ & 10800 \end{aligned}$ 7.2	3 1FT 1 2 1 3 1FT	B1 for each FT $29+$ their 3 values from (a) M1 for $\frac{n}{16+\text { their } 3}(0<n<(16+$ their 3$))$ or $\frac{4+\text { their } 3}{k}(k>(4+$ their 3$))$ M2 for $1 / 2(900+1500) \times 9$ oe or M1 for method of finding a relevant area FT (their 10800) $\div 1500$
$4 \quad$ (a) (i) (ii) (iii) (iv) (b) (c)	64 16 to 16.5 62 6 $\begin{array}{llllll}{[8]} & 12 & 23 & 11 & {[4]} & 2\end{array}$ $\begin{array}{lllll}\text { Blocks of height } & 0.6 & 2.3 & 1.1 & 0.4\end{array}$ with correct widths		$\mathbf{M 1}$ for $\mathrm{UQ}=71$ to 71.5 or $\mathrm{LQ}=55$ B1 for 24 indicated B1 for 54 seen B2 for 1 incorrect reading FT others B1 for 2 correct FT their (b) for heights B1FT for each correct block If $\mathbf{B 0}, \mathbf{S C 1}$ for blocks of widths $20,10,10,10$ or for their correct frequency densities
5 (a) (b)	$\begin{aligned} & 6250 \\ & 4441 \end{aligned}$	3 3	M2 for $\frac{6000}{100-4} \times 100$ oe or M1 for 6000 associated with 96 [\%] B2 for 4441.1 to 4441.2 or 4440 or M1 for $\frac{6000}{1.351}$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0580	42

Qu.	Answers	Mark	Part Marks
(c)	1.58 or 1.581...	5	M1 for $6000 \times\left(1+\frac{1.5}{100}\right)^{8}$ oe A1 for $6758.95 \ldots \ldots$. or 6758.96 to 3 sf or better or 758.95 or 758.96 rounded or truncated to 3 sf and M2 for $\left\{\right.$ their $\left.\left(6000 \times 1.015^{8}\right)-6000\right\} \times \frac{100}{6000 \times 8}$ oe or M1 for $\frac{6000 \times r \times 8}{100}$ oe
(ii) (b) (i) (ii) (c)	Rotation 90° [anticlockwise] oe (4, 4) Enlargement [centre] (5, 1) [scale factor] 2 Image at $(-2,5)(-2,7)(-1,7)$ Image at $(-2,1)(-2,-1)(-1,-1)$ Image at $(-2,3)(-4,3)(-4,4)$	1 1 1 1 1 1 2 $2 F T$ 3	B1 for translation by $\binom{-5}{k}$ or $\binom{k}{3}$ FT their triangle P reflected in line $y=3$ B1 for reflection of triangle \boldsymbol{P} in the line $x=3$ or $y=k$ B2 for 2 vertices correct in triangle or 3 correct co-ordinates soi in working or B1 for 1 vertex in triangle correct soi or M1 for $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{lll}3 & 3 & 4 \\ 2 & 4 & 4\end{array}\right)$ shown or statement rotation 90° [anticlockwise] about $(0,0)$
7 (a) (b) (c)	$\begin{array}{\|lll} \hline 3.5[0] & 1.94 & 3.11 \end{array}$ Fully correct curve $-0.7 \text { to }-0.6$	3 5 1	B1 for each B3 FT for 10 or 11 points or B2 FT for 8 or 9 points or B1 FT for 6 or 7 points B1 indep two separate branches not touching or cutting y-axis SC4 for correct curve, but branches joined

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0580	42

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2016	0580	42

Qu.	Answers	Mark	Part Marks
$9 \quad$ (a) (i) (ii) (iii) (b) (c) (i) (ii)	$\begin{aligned} & \mathbf{y} \\ & \mathbf{x}+\mathbf{y} \\ & \mathbf{x}+2 \mathbf{y} \\ & -(1 / 2 \mathbf{x}+\mathbf{y}) \text { oe } \\ & \overrightarrow{M G}=2 \mathbf{x}+2 \mathbf{y} \\ & \overrightarrow{M H}=\mathbf{x}+\mathbf{y} \text { or } \overrightarrow{H G}=\mathbf{x}+\mathbf{y} \\ & \overrightarrow{M G}=2 \overrightarrow{M H} \text { oe } \end{aligned}$	$\begin{gathered} \hline 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ \hline \text { M1 } \\ \text { A1 } \end{gathered}$	M1 for a correct unsimplified route or identifying $\overrightarrow{O S}$ M1 for a correct unsimplified route or $\overrightarrow{\mathrm{GR}}=-1 / 2 \mathbf{x}$ or $\overrightarrow{\mathrm{RG}}=1 / 2 \mathbf{x}$ M1 for a correct unsimplified route e.g. $2 \overrightarrow{P Q}$ Accept $\overrightarrow{H M}=-\mathbf{x}-\mathbf{y}$ or $\overrightarrow{G H}=-\mathbf{x}-\mathbf{y}$ Dep on (c)(i) correct, arrows essential
10 (a) (b) (i) (ii)	5.2[0] or 5.196... 7.2[0] or 7.196... 62.4 or $62.35 \ldots$	3 1FT 5	M2 for $\left[h^{2}=\right] 6^{2}-3^{2}$ or better or M1 for $h^{2}+3^{2}=6^{2}$ or $\mathbf{B 1}$ for $P R($ or $P Q$ or $Q R)=6$ FT their (a) +2 M4 for $12 \times 6 \times 1 / 2 \tan 60$ oe or M3 for $6 \times 1 / 2 \tan 60$ oe or M2 for realising that $1 / 2$ base $=1 \times \tan 60$ oe or B1 for angle 30 or 60 in correct position on diagram or in a calculation If $\mathbf{0}$ scored, $\mathbf{S C 1}$ for volume $=$ an area $\times 12$ seen
11 (a) (i) (ii) (b) (c) (d)	11 $14 x+3$ final answer 17-21x final answer $\begin{aligned} & -\frac{1}{9} \\ & -1.3 \end{aligned}$		M1 for $7(2-3 x)+3$ oe M1 for $3(2-3 x)=7$ oe M1 for correct first step M1 for $2-3(x+4)-(7 x+3)=0$ M1 for $-10 x-13=0$ oe If $\mathbf{0}$ scored, SC1 for answer -0.7 oe after $2-3(x+4)-7 x+3=0$ shown previously

MARK SCHEME for the October／November 2015 series

0580 MATHEMATICS

0580／41
Paper 4 （Extended），maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2015 series for most
Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some
Cambridge O Level components．
$®$ IGCSE is the registered trademark of Cambridge International Examinations．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	41

Question	Answer	Mark	Part marks
1 (a)	6	3	B2 for $5 \frac{1}{4}$ or 5.25 shown in working isw or M1 for $\frac{3}{4} \times 7$ soi by answer 5
(b)	21.45 cao final answer	2	M1 for 17.16×0.25 or 17.16×1.25
(c)	16.5[0] nfww	3	M2 for $17.16 \div 1.04$ oe or M1 for 17.16 associated with 104[\%] oe isw
(d)	1.34 cao final answer	2	M1 for $13.32 \div 0.72$ soi by $18.5[0]$ or for any correct complete longer method If zero scored, $\mathbf{S C 1}$ for 0.96 [euros] seen
(e) (i)	750	1	
(ii)	4.7 cao	3	B2 for 4.658 to 4.66 or M2 for $\sqrt{\text { their }(\mathbf{e})(\mathbf{i}) \div 11 \pi}$ or M1 for $11 \pi r^{2}=$ their $(\mathbf{e})(\mathbf{i})$
(iii)	6	2	M1 for 2^{3} or $\frac{1}{2^{3}}$ oe seen or for $\pi \times(2 \times \text { their }(\mathrm{e})(\text { iii }))^{2} \times 22$ If zero scored, SC1 for answer 6000
(f)	8950	1	
(g)	210	2	M1 for 0.07×3000
(h)	160000	3	M2 for $2 \times 60 \times 100^{3} \div 750$ oe or M1 for figs 16 as answer or 100^{3} seen
2 (a)	1.62 or 1.62...	1	
(b) (i)	7	1	
(ii)	4	1	
(iii)	7	1	
(iv)	$\frac{1}{3} \text { oe }$	1	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	41

Qu	Answers	Mark	Part Marks
(c) (i)	0.25 oe and 1	2	B1 for each
(ii)	Correct curve	4	B3FT for 6 or 7 correct plots or B2FT for 4 or 5 correct plots or B1FT for 2 or 3 correct plots
(iii)	2.3	1FT	Correct or FT where $y=5$ on their graph
(iv)	$y=3 x-1$ oe 3 term equation	3	B2 for $3 x-1$ or $y=3 x[+c]$ oe or for $m=3$ and $c=-1$ or M1 for [gradient $=$] $\frac{8-2}{3-1}$ oe soi by $3 x$ and M1 for substitution of $(1,2)$ or $(3,8)$ into their $y=m x+c$
(v)	-1.7 to -1.5 and 2	2	B1 for either or M1 for $y=x+2$ seen or drawn
3 (a) (i)	25.4 or 25.35... nfww	5	M2 for $\sqrt{60^{2}-50^{2}}$ oe soi by 33.1 to 33.2 or M1 for $T B^{2}+50^{2}=60^{2}$ oe and M2 for $\tan =\frac{\text { theirTB }}{70}$ oe or $\mathbf{B 1}$ for recognising angle $T C B$ as required angle
(ii)	109 or 109.0 to 109.1	4	M2 for $50^{2}+70^{2}-2 \times 50 \times 70 \times \cos 130$ M1 for implicit cos rule A1 for 11899 to 11900
(iii)	1340 or 1340.0 to 1341	2	M1 for $\frac{1}{2} \times 50 \times 70 \times \sin 130$ oe
(b)	51.5 or 51.50 to 51.51	4	$\begin{aligned} & \text { M3 for }[X Y]=\sqrt{45^{2}+22^{2}+12^{2}} \\ & \text { or M2 for }\left[X Y^{2}=\right] 45^{2}+22^{2}+12^{2} \text { soi by } \\ & 2653 \\ & \text { or M1 for } 45^{2}+22^{2} \text { oe } \\ & \quad \text { or } 45^{2}+12^{2} \text { oe } \\ & \text { or } 12^{2}+22^{2} \text { oe } \end{aligned}$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	41

Qu	Answers	Mark	Part Marks
4 (a) (i) (ii) (b)	$\left\lvert\, \begin{aligned} & x \geqslant 5 \text { oe } \\ & y \leqslant 8 \text { oe } \\ & x+y \leqslant 15 \text { oe } \\ & y>x \text { oe or } y \geqslant x+1 \end{aligned}\right.$ $x=5 \text { ruled }$ $y=8 \text { ruled }$ $x+y=15 \text { ruled }$ $y=x$ ruled broken line Correct region indicated	1 1 1 1dep	Condone $5 \leqslant x \leqslant 15$ Condone $0<y \leqslant 8$ B1 for each -1 for first occurrence of strict inequalities used in first 3 inequalities Allow $y=x+1$ ruled only after $y \geqslant x+1 \text { in (a)(i) }$ Dependent on all marks for lines earned Accept R written in correct quadrilateral or any other unambiguous indication or accept in triangle if $y=x+1$ used and all marks for lines earned B1 for $(7,8)$ chosen or M1 for a calculation shown of the form $6 x+4.5 y$ where (x, y) is clearly in their region and both x and y are integers
5 (a) (b) (c)	37 or [angle] $B A D$ [Angles in] same segment [are equal] 74 or 2 [\times angle] $B A D$ or 2 [\times angle] $B E D$ Angle at centre is twice angle at circumference 143 or $180-$ [angle] $B A D$ or 180 - [angle] $B E D$ [Opposite angles of] cyclic quad [are supplementary]	1 1dep 1 1dep 1 1dep	Dependent on 37 or [angle] BAD Dependent on 2×37 or 2 [\times angle] BAD or 2 [\times angle] $B E D$ Must use the terms circumference, centre and angle Dependent on 180-37 or 180 - [angle] $B A D$ or 180 - [angle] BED

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	41

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	41

Qu	Answers	Mark	Part Marks
(d) (e)	Correct ruled perpendicular bisector of $C B$ with correct arcs Correct two pairs of arcs Correct ruled bisector of angle $A C B$ with correct pair of arcs Ruled line parallel to $C B$ in triangle 1.3 to 1.7 cm from $C B$ in triangle Correct region indicated 40	2 1 1 1dep 2	B1 for correct perpendicular bisector without/wrong arcs B1 for correct bisector of angle $A C B$ without/wrong arcs Provided this line is not the perpendicular bisector of $A C$ Dependent on at least B1,B1,1,1 earned M1 for 0.4×10^{2} oe
8 (a) (b) (i) (ii)	$(x-5)(x+2) \quad \text { final answer }$ $\begin{aligned} & x(x+2)+3(x+1)=3 x(x+1) \text { or } \\ & x^{2}+2 x+3 x+3=3 x^{2}+3 x \\ & 0=2 x^{2}-2 x-3 \\ & \frac{[--] 2 \pm \sqrt{([-] 2)^{2}-4(2)(-3)}}{2(2)} \\ & \text { or } 0.5 \pm \sqrt{1.75} \end{aligned}$ -0.823 and 1.823 final answer	M2 A1 B2	B1 for $(x-5)(x+2)$ seen and then spoiled or M1 for $(x+a)(x+b)$ where $a+b=-3$ or $a b=-10[a, b$ integers] M1 for $x(x+2)+3(x+1)$ or better seen Allow recovery of omitted brackets for M marks but not A mark Brackets expanded correctly and/or no errors or omission of brackets seen B1 for $\sqrt{([-] 2)^{2}-4(2)(-3)}$ or $\sqrt{28}$ or $\sqrt{1.75}$ oe in completion of square and B1 for in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$, $p=--2$ and $r=2(2)$ or better or $(x-0.5)^{2}$ oe in completion of square If $\mathbf{B 0 B 0}$ for answers, SC1 for -0.82 or $-0.822 \ldots$ and 1.82 or 1.822 .. as final answers or -0.823 and 1.823 seen or -1.823 and 0.823 as final answers

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	41

Qu	Answers	Mark	Part Marks
(c)	$\frac{x^{2}+3 x+3}{(x+2)(x+1)}$ or $\frac{x^{2}+3 x+3}{x^{2}+3 x+2}$ final answer nfww	4	M1 for $(2 x+3)(x+1)-x(x+2)$ oe isw B1 for common denominator $=(x+2)(x+1)$ isw or $x^{2}+3 x+2$ isw B1 for $2 x^{2}+2 x+3 x+3$ or better or $-x^{2}-2 x$ or $x^{2}+3 x+3$
9 (a) (i) (ii) (b) (i) (ii) (c)	16 n^{2} 43 7 $a=\frac{5}{2}$ oe, $b=\frac{5}{6}$ oe with supporting working	1 1 1 1 6	M1 for any correct substitution eg $\frac{2}{3}(2)^{3}+2^{2} a+2 b$ A1 for one of eg $\frac{2}{3}+a+b=4$ or better eg $\frac{16}{3}+4 a+2 b=17$ or better eg $\frac{54}{3}+9 a+3 b=43$ or better A1 for another of eg $\frac{2}{3}+a+b=4$ or better eg $\frac{16}{3}+4 a+2 b=17$ or better eg $\frac{54}{3}+9 a+3 b=43$ or better M1 for correctly eliminating one variable from two of their equations in a and b A1 for $a=\frac{5}{2}$ oe A1 for $b=\frac{5}{6}$ oe After zero scored, SC2 for 2 correct answers without supporting working or SC1 for 2 of 17, 43, 86, 150, 239 seen

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	41

Qu	Answers	Mark	Part Marks
$\mathbf{1 0}$ (a)	$\mathbf{b}-\mathbf{a}$ or $-\mathbf{a}+\mathbf{b}$	$\mathbf{1}$	
(b)		4	B3 for correct unsimplified expression in \mathbf{a} and \mathbf{b} or

MARK SCHEME for the October/November 2015 series

0580 MATHEMATICS

0580/42
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2015 series for most
Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some
Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	$\mathbf{0 5 8 0}$	$\mathbf{4 2}$

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Mark	Part marks
(ii) (b) (c) (d) (i) (ii) (e)	$\begin{align*} & \frac{512}{7+11+14} \times 14 \tag{i}\\ & 112 \\ & 10100 \\ & 19 \\ & 4093000 \\ & 4.093 \times 10^{6} \\ & 198 \text { or } 198.1 \text { to } 198.2 \end{align*}$	M2 1 2 2 1 1FT 3	or M1 for $\frac{512}{7+11+14}$ M1 for 224×45 soi by 10080 M1 for $224 \div 12$ soi by 18.66 to 18.67 or 18.7 or $18 \frac{2}{3}$ FT their (d)(i) M2 for $\frac{8.2-2.75}{2.75} \times 100$ oe or M1 for $\frac{8.2}{2.75} \times 100$ or $\frac{8.2-2.75}{2.75}$
2 (a) (b) (c)	$\begin{array}{llll} 0 & 4 & 0.625 & 0.875 \end{array}$ Fully correct smooth curve line $y=x+1$ ruled and 0.2 to 0.3 and 1.8 to 1.95	1,1,1,1 4 3	B3 FT for 8 or 9 points or B2 FT for 6 or 7 points or B1 FT for 4 or 5 points Line must be fit for purpose ie at least from $x=0$ to $x=2$ B2 for correct line and 1 correct value or B1 for correct line or SC1 for no/wrong line and 2 correct values

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	$\mathbf{0 5 8 0}$	$\mathbf{4 2}$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	42

\begin{tabular}{|c|c|c|c|}
\hline (c)

(d) \& \begin{tabular}{l}
1.33 or 1.332...nfww

41.1 or 41.13 to 41.14

 \& 3 \&

M2 for $\sqrt{2.3^{2}-\left(\frac{1}{2} \times 1.2\right)^{2}}$ or M1 for $2.3^{2}=h^{2}+(0.5 \times 1.2)^{2}$

and M1 for $\frac{1}{2} \times 1.2 \times$ their 2.22 (their 2.22 must come from attempt at Pythag or from trig in triangle $B C D$)

M2 for $\sin =\frac{1.25}{1.9}$ oe or M1 for correct angle identified
\end{tabular}

\hline \multirow[t]{3}{*}{$\begin{array}{lll}5 & \text { (a) } & \text { (i) } \\ & \\ & \\ \text { (ii) }\end{array}$} \& | $4 x(3 x+13)-2 x(4 x-\{3 x-9\})=24$ |
| :--- |
| oe $12 x^{2}+52 x-2 x^{2}-18 x$ | \& M1 \& Correct removal of all their brackets Dep on two areas added or subtracted

\hline \& $$
\begin{aligned}
& 5 x^{2}+17 x-12=0 \\
& (5 x-3)(x+4)[=0] \\
& \frac{3}{5} \text { oe },-4
\end{aligned}
$$ \& A1

M2

A1 \& | with no errors or omissions seen and at least one more line of working showing collection of like terms or division by 2 |
| :--- |
| M1 for $(5 x+a)(x+b)$ where $a b=-12$ or $5 b+a=17 \quad[a, b$ integers] |
| If zero scored $\mathbf{S C 1}$ for correct answers with no working or from other methods. |

\hline \& For correctly eliminating one variable \& M1 \&

\hline \& $$
\begin{aligned}
& x=3 \\
& y=-7
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathbf{A 1} \\
& \mathbf{A 1}
\end{aligned}
$$

\] \& | SC1 if no working shown, but 2 correct answers given |
| :--- |
| If zero scored SC1 for 2 values satisfying one of the original equations |

\hline (c) \& $t=-2 \mathrm{nfww}$ \& 5 \& | M1 for $2(t+3)(t+3)-t^{2}$ or better seen M1 for denominator[s] $t(t+3)$ isw or for $t(t+3)$ isw on RHS |
| :--- |
| M1dep for $2 t^{2}+12 t+18-t^{2}=t^{2}+3 t$ oe dependent on both numerators and denominator expanding to give quadratics |
| A1 for $9 t+18=0$ oe |

\hline
\end{tabular}

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	42

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	$\mathbf{0 5 8 0}$	$\mathbf{4 2}$

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
8 (a) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\& (4,6) \\
\& 4.47 \text { or } 4.472
\end{aligned}
\] \& \[
\begin{gathered}
1,1 \\
3
\end{gathered}
\] \& M2 for \(\sqrt{(8-4)^{2}+(5-3)^{2}}\) or better or M1 for \((8-4)^{2}+(5-3)^{2}\) or better \\
\hline \begin{tabular}{l}
(c) \\
(d)
\end{tabular} \& \[
y=2 x-2 \text { oe }
\]
\[
-3
\] \& 3

3 \& | B2 for $2 x-2$ or $y=2 x+c$ oe or M1 for [$m=] \frac{8-4}{5-3}$ oe soi by $2 x$ and M1 for $(3,4)$ or $(5,8)$ or their midpoint substituted into their $y=m x+c$ with m numerical |
| :--- |
| M1 for use of gradient \times their $m=-1$ soi by $-\frac{1}{2}$ |
| M1 for $r=$ their gradient $\times 6[+0]$ |

\hline | (i) |
| :--- |
| (ii) |
| (b) |
| (c) |
| (d) | \& | 11 |
| :--- |
| 256 |
| $\frac{x-5}{2}$ oe final answer |
| $19-6 x$ final answer $-1,0,1,2$ | \& | 1 |
| :--- |
| 2 |
| 2 |
| 2 |
| 3 | \& | M1 for $[\mathrm{g}(3)=] 8$ or 2^{3} or $2^{2^{x}}$ |
| :--- |
| M1 for $x=2 y+5$ or $2 x=y-5$ or better or $\frac{y}{2}=x+\frac{5}{2}$ |
| M1 for $2(7-3 x)+5$ |
| Additional values count as errors B2 for one error /omission or B1 for two errors/omissions |
| or M2 for $-2<x \leqslant 2$ oe seen or M1 for $-2<x$ or $x \leqslant 2$ or $x=-2$ and $x=2$ or $-4<2 x \leqslant 4$ |

\hline | 10 (a) |
| :--- |
| (b) |
| (c) (i) |
| (ii) |
| (d) (i) |
| (ii) | \& | 8 |
| :--- |
| 25 |
| 17 |
| $n+2$ oe |
| $(n-1)^{2}$ oe |
| 92 |
| $n^{2}-3 n-1$ final answer |
| 39 | \& | 1 |
| :--- |
| 2 |
| 2 |
| 2 |
| 1 | \& | B1 for 2 correct |
| :--- |
| M1 for $(n+k)^{2}$ for integer k |
| M1 for $\sqrt{8281}$ or 91 seen |
| M1 for their $(n-1)^{2}-$ their $(n+2)$ soi |

\hline
\end{tabular}

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	42

(e)	1 and $-\frac{1}{2}$ oe	$\mathbf{1}$	
$\frac{1}{4}$ oe	$\mathbf{1}$		
$-\frac{1}{8}$ oe	$\mathbf{1}$		

MARK SCHEME for the October／November 2015 series

0580 MATHEMATICS

0580／43
Paper 4 （Extended），maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates，to indicate the requirements of the examination．It shows the basis on which Examiners were instructed to award marks．It does not indicate the details of the discussions that took place at an Examiners＇meeting before marking began， which would have considered the acceptability of alternative answers．

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers．

Cambridge will not enter into discussions about these mark schemes．
Cambridge is publishing the mark schemes for the October／November 2015 series for most
Cambridge IGCSE ${ }^{\circledR}$ ，Cambridge International A and AS Level components and some
Cambridge O Level components．
$®$ IGCSE is the registered trademark of Cambridge International Examinations．

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	43

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Mark	Part marks
(a) (i) (ii) (iii) (b)	$\begin{aligned} & 3.9[0] \\ & \frac{13}{18} \text { cao } \\ & 24 \\ & 109 \text { cao } \end{aligned}$	2 3	M1 for $2.6 \div 2$ B1 for any correct unsimplified fraction M2 for $9 \div 0.375$ oe or M1 for associating 9 with ($100-62.5$)\% B2 for 108.5 to 108.6 or M1 for $250 \times\left(1-\frac{8}{100}\right)^{10}$ oe
(a) (i) (ii) (b) (c) (i) (ii)	Image at (-2, 5), (1, 5), (1, 7) Image at $(2,-3),(5,-3),(5,-5)$ Rotation 180 oe $(-1,0)$ Reflection $y=-x$ oe $\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$	2 1 1 1 1 1 2	SC1 for translation $\binom{-4}{k}$ or $\binom{k}{4}$ or 3 correct vertices plotted but not joined SC1 for a reflection in a horizontal line or in the line $x=-1$ or 3 correct vertices plotted but not joined Alt Enlargement SF-1 $\quad(-1,0)$ Not as column vector SC1 for a correct row or column

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	43

3 (a)	43200	3	$\begin{aligned} & \text { M2 for } 0.5 \times(35+25) \times 12 \times 120 \text { oe } \\ & \text { or } \\ & \text { M1 for } 0.5 \times(35+25) \times 12 \text { oe } \end{aligned}$
(b) (i)	$0.5 \times(25+30) \times 6 \times 120[=19800]$	M2	Dep on a valid method for obtaining the width of 30 cm B1 for $0.5 \times(25+35)$ oe
(ii)	45.8 or 45.83...	1FT	$\text { FT for } \frac{19800}{\text { their } \mathbf{(a)}} \times 100$
(c)	1 hr 39 min	4	B3 for $1.65[\mathrm{~h}]$ or 99 mins or $\frac{33}{20}$ or M2 for $\frac{19800}{12 \times 1000}$ oe or M1 for $\frac{19800}{12}$ or $\frac{19800}{1000}$ or 12×1000
			If zero scored then SC1 for figs 165 and B1 for converting their time (in hours) into hours and minutes
(d)	12.8 or 12.80 to 12.81	3	$\text { M2 for } \sqrt[3]{\frac{19800}{3 \pi}}$ or $\text { M1 for } \pi r^{2} 3 r=19800$
(e)	21[.0]	2	M1 for $\frac{19800}{1000}+1.2$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	43

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	43

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	43

(c)	$25 \text { nfww }$	4	M1 for $\frac{4[.] 80}{w-1}$ or $\frac{7[.] 80}{2 w-11}$ M1 for $\frac{4[.] 80}{w-1}=\frac{7[.] 80}{2 w-11}$ oe M1 for $480(2 w-11)=780(w-1)$ oe or ALT M1 for $n(w-1)=4[]$.80 or $n(2 w-11)=7[]$. M1 for $2 w n-11 n=7[]$. $2 w n-2 n=9[.] 60 \text { oe }$ M1 for $9 n=180$ oe or better or ALT M1 for $n(w-1)=4[]$.80 or $n(2 w-11)=7[]$. $\mathbf{M 1}$ for $\frac{4[\cdot] 80+n}{n}=\frac{7[\cdot] 80+11 n}{2 n}$ M1 for $9 n=180$ oe or better
(d) (i) (ii) (iii)	$\frac{1}{2} u(3 u-2)=2.5$ One further correct step leading to $3 u^{2}-2 u-5=0$ with no errors $(3 u-5)(u+1)$ 29.1 or $29.05 \ldots$	M1 A1 2	First step must involve $\frac{1}{2} u(3 u-2)$ SC1 for $(3 u+a)(u+b)$ where $a b=-5$ or $a+3 b=-2$ [a, b integers] M2 for $\tan =\frac{\text { their } \frac{5}{3}}{3 \times \text { their } \frac{5}{3}-2}$ or M1 for substituting their positive value of u into [u and] $3 u-2$
(a) (i) (ii) (iii) (b) (i) (ii) (iii) (iv)	Angle A is common to both triangles oe $A D B=A B C$ Third angle of triangles equal oe Similar 8.25 38 38 78 26	1dep 1	Accept $D A B=C A B$ oe Dep on previous mark M1 for $\frac{16}{12}=\frac{11}{B D}$ oe or better

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	0580	43

(c)	36 nfww	5	B4 for an equation in m that simplifies to $5 m=180$ or B1 for each of 3 of the listed angles expressed in terms of m, in it's simplest form, stated or labelled on diagram Angle $P Q O=m$ Angle $Q O R=m$ Angle $O Q R=2 m$ Angle $P Q R=3 m$ or $180-2 m$ or $90+\frac{m}{2}$ Angle $P O R=180-m$ or $4 m$ or $360-6 m$ Reflex angle $P O R=360-4 m$ or $6 m$ or $180+m$
$9 \quad$ (a)	8	1	
(b)	3	2	B1 for $[\mathrm{g}(0.5)=] 2$ soi
			M1 for $2\left(\frac{1}{x}\right)-1$ or better
(c)	$\frac{x+1}{2}$ final answer	2	M1 for $x=2 y-1$ or $y+1=2 x$ or better
(d)	$4 x-3$	2	M1 for $2(2 x-1)-1$
(e)	$4 x^{2}-4 x+7$	2	B1 for $\left[(2 x-1)^{2}\right]=4 x^{2}-2 x-2 x+1$
(f)	x	1	
(g)	$\mathrm{g}^{-1}(x)=\mathrm{g}(x)$	1	
(h)	$\mathrm{fh}(x)$	1	

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2015	$\mathbf{0 5 8 0}$	43

10	A $\mathbf{- 1 3},-20$	1	
	$-7 n+22$ oe	2	$\mathbf{S C 1}$ for $-7 n+k$ or $k n+22$ oe
	B $\frac{9}{22}, \frac{10}{23}$	1	
	$\frac{n+4}{n+17} \text { oe }$	2	B1 for $n+4$ oe or $n+17$ oe seen, but not in wrong position
	C 26,37	1	
	$n^{2}+1$ oe	1	
	D 162,486	1	
	$2 \times 3{ }^{n-1}$ oe	2	$\mathbf{S C 1}$ for $k \times 3^{n+p}$ [k, p integers]
			$\text { Accept } 2 \times \frac{3^{n}}{3}$

MARK SCHEME for the May/June 2015 series

0580 MATHEMATICS

0580/41
Paper 4 (Paper 4 - Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	41

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	41

Question	Answers	Mark	Part Marks
(c) (d) (e)	$\begin{aligned} & -1.35 \text { to }-1.25 \\ & -0.27 \text { to }-0.251 \\ & 1.51 \text { to } 1.55 \\ & k<1.2 \text { or } 1.15 \text { to } 1.25 \\ & \text { tangent ruled at } x=-1 \\ & -1.7 \text { to }-1.3 \end{aligned}$	1 2 B1 2	SC1 for 1.15 to 1.25 seen or horizontal line drawn at min point No daylight at $x=-1$ Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x=-1.1$ and -0.9 dep on B1 or a close attempt at tangent at $x=-1$ or M1 for rise/run also dep on any tangent drawn or close attempt at tangent at any point. Must see correct or implied calculation from a drawn tangent
(a) (i) (ii) (iii) (b) (c)	image at $(1,4)(1,5)(2,5)(4,4)$ image at $(-2,-1)(-5,-1)(-2,-2)$ $(-3,-2)$ image at $(2,-1)(2,-2)(3,-2)$ $(5,-1)$ enlargement [centre] $(1,0)$ [scale factor] - 3 $\left(\begin{array}{rr} 0 & -1 \\ 1 & 0 \end{array}\right)$	2 3 B1 B1 B1 2	SC1 for translation by $\binom{-1}{k}$ or $\binom{k}{3}$ or 4 correct vertices plotted but not joined SC1 for correct size and orientation, wrong position or 4 correct vertices plotted but not joined B2 for 3 correct vertices plotted or if no / wrong plots allow SC2 for 4 correct coordinates in column matrix or shown in working or SC1 for any 3 correct coordinates or M1 for $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{llll}2 & 2 & 3 & 5 \\ 1 & 2 & 2 & 1\end{array}\right)$ oe not as column vector B1 for one correct row or column or $\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	41

Question	Answers	Mark	Part Marks
4 (a) (b) (c) (d) (i) (ii) (e)	5 $C \cap M$ oe 3 $\frac{8}{30}$ oe $\frac{14}{30}$ oe $\frac{30}{272}$ oe	1 1 1 1 1 3	Allow e.g. $(B \cap C \cap M) \cup(C \cap M)$ 0.267 or better 0.467 or better M2 for $\frac{6}{17} \times \frac{5}{16}$ or M1 for $\frac{6}{17}$ seen $0.110[2 \ldots]$ or better
(a) (i) (ii) (b) (i) (ii)	10.6 or $10.59 \ldots$ 175 or 174.9 [...] to $175 .[1 \ldots]$ 4.9 or 4.89 to 4.9 54.7 or 54.71 to 54.722	4 3 2	M1 for $\tan =\frac{55}{294}$ oe M2 for $[\operatorname{adj}=] \frac{55}{\tan 24.8}$ oe or M1 for implicit version and M1 dep on at least M1 for 294 - their adj M3 for $\sqrt{4^{2}+\left(\frac{1}{2} \sqrt{4.8^{2}+3^{2}}\right)^{2}}$ or M2 for $\frac{1}{2} \sqrt{4.8^{2}+3^{2}}$ or M1 for $\sqrt{4.8^{2}+3^{2}}$ or $2.4^{2}+1.5^{2}$ M1 for $\sin =\frac{4}{\text { their } 4.9}$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	41

6 (a) (i) (ii)	$24<t \leqslant 30$ 30.9 or 30.875 nfww	1 4	M1 for midpoints soi (condone 1 error or omission) $5,17,27,35,50,65$ soi M1 for use of $\sum f x$ with x in correct interval including both boundaries (condone 1 further error or omission) (50, 1530, 3645, 2975, 3500, 650) and $\text { M1 (dep on } \left.2^{\text {nd }} \mathbf{M} 1\right) \text { for } \sum f x \div 400$
(b) (i)	[10 100] 235320390 [400]	2	B1 for any two correct SC1 for 235, $n, n+70 \quad n>235$
(ii)	Correct curve or polygon	3	B1 for correct horizontal placement B1FT for correct vertical placement
			B1FT dep on at least B1 for reasonable increasing curve or polygon through their 6 points If zero scored $\mathbf{S C} \mathbf{1}$ for 5 out of 6 points correctly plotted
(c) (i)	27.5 to 29	1	
(ii)	12 to 14	2	B1 for 36 to 38 or 24 seen
(iii)	18 to 20	2	B1 for 60 seen or marked on grid
(iv)	30 to 45	2	B1 for 355 to 370 seen

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	41

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
\[
\begin{array}{lll}
7 \& \text { (a) } \& \text { (i) }
\end{array}
\] \\
(ii) \\
(b)
\end{tabular} \& \begin{tabular}{l}
8.27 or \(8.269 \ldots\) nfww \\
28.2 or 28.18.. \\
55.8 or 55.78 to 55.79 nfww
\end{tabular} \& 2 \& \begin{tabular}{l}
M2 for \(7.6^{2}+8.4^{2}-2 \times 7.6 \times 8.4 \times \cos (62)\) oe or \\
M1 for implicit form \\
A1 for \(\left[P Q^{2}=\right] 68.3\) to 68.5 \\
M1 for \(0.5 \times 7.6 \times 8.4 \times \sin 62 \quad\) oe \\
B1 for [HGJ] = 81 \\
B1 for \([G H J]=61\) \\
M2 for \([G J=] \frac{63}{\sin (\text { their } 81)} \times \sin (\) their 61\()\) or \\
M1 for implicit form After M0, SC1 for final answer of 68.1...
\end{tabular} \\
\hline \begin{tabular}{l}
8 (a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\[
5 x=75 \text { or } 5 x+48=123
\] \\
15 \\
6, 7
\end{tabular} \& \begin{tabular}{l}
B2 \\
B1 \\
3
\end{tabular} \& \begin{tabular}{l}
M1 for \(x+(x+12)+3(x+12)=123\) oe \\
B2 for answer of 6 or 7 \\
OR \\
M1 for \(t<8\) \\
M1 for \(t \geqslant \frac{37}{7}\) \\
OR \\
SC2 for final answer of \(5,6,7\) or 6,7, 8 \\
or SC1 for final answer of \(5,6,7,8\)
\end{tabular} \\
\hline (c) (i) \& 1.8 oe \& 3 \& M1 for \(21-x=4(x+3)\) or better B1 for \([\pm] 5 x=k\) or \(k x=[\pm] 9\) \\
\hline (ii) \& \(\sqrt{7^{2}-4 \times 3 \times(-5)}\) or better nfww and \(\frac{-7+\sqrt{q}}{2(3)}\) or \(\frac{-7-\sqrt{q}}{2(3)}\) oe \& B1

B1 \& | or for $\left(x+\frac{7}{6}\right)^{2}$ |
| :--- |
| or for $-\frac{7}{6} \pm \sqrt{\frac{5}{3}+\left(\frac{7}{6}\right)^{2}}$ |

\hline \& -2.91 and 0.57 final ans cao \& B1B1 \& $$
\begin{aligned}
& \text { SC1 for } 0.6 \text { or } 0.573 \ldots \text { and } \\
& \quad-2.9 \text { or }-2.907 \text { or }-2.906 \ldots \\
& \quad \text { or }-0.57 \text { and } 2.91 \\
& \text { or } 0.57 \text { and }-2.91 \text { seen in working }
\end{aligned}
$$

\hline
\end{tabular}

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	41

9 (a) (i) (ii) (b) (i) (ii)	42 111 37.7 or 37.69 to 37.704 nfww 12100, 12060, 12070, 12062.4 to 12065.6 nfww	2 2 2 5	B1 for $B A C=90-48$ B1 for 111 or 69 or $A C D=27$ correctly placed on diagram or indicated M1 for $6 \pi+4 \pi \pm 2 \pi$ oe SC4 for answer with figs 121 or 1206 to 1207 OR M2 for total area $=\frac{1}{2} \pi 6^{2}+\frac{1}{2} \pi 4^{2}-\frac{1}{2} \pi 2^{2}$ or $\quad \frac{1}{2} \pi 60^{2}+\frac{1}{2} \pi 40^{2}-\frac{1}{2} \pi 20^{2}$ or M1 for $\frac{1}{2} \pi 6^{2}$ or $\frac{1}{2} \pi 4^{2}$ or $\frac{1}{2} \pi 2^{2}$ or $\frac{1}{2} \pi 60^{2}$ or $\frac{1}{2} \pi 40^{2}$ or $\frac{1}{2} \pi 20^{2}$ A1 for area $=75.39$ to 75.41 or 7539 to 7541 and M1 dep for volume $=$ their area \times thickness
10 (a)	475 or 465 to 485	2	B1 for 9.3 to $9.7[\mathrm{~cm}]$ seen
(b)	Correct perpendicular bisector with two pairs of intersecting arcs	2	B1 for accurate with no/wrong arcs or M1 for correct intersecting arcs
(c)	Compass drawn arc centre B radius 5.8	2	M1 for compass drawn arc centre B or B1 for 5.8 cm stated or used
	Accurate angle bisector at C with correct intersecting arcs	2	B1 for accurate with no/wrong arcs or M1 for correct intersecting arcs
		1	cao

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	41

11 (a)	$\frac{A t}{t+r} \quad$ final answer oe nfww	4	B1 for $t(A-x)=x r$ or $t A-t x=x r$ or $A=\frac{x r}{t}+x$ M1 for correctly completing multiplication by t (eliminating any bracket) and x terms isolated M1 for correct factorisation M1 dep for correct division
(b)	$\begin{aligned} & {[a=] 64} \\ & {[b=]-8} \end{aligned}$	3	B1 for $2 b=-16$ or $(x-8)^{2}$ B1 for $a=(\text { their } b)^{2}$ If $\mathbf{0}$ scored, $\mathbf{S C} \mathbf{1}$ for $x^{2}+2 b x+b^{2}$ soi
(c)	$\frac{13 x+8}{(x-4)(3 x-2)}$ final answer nfww	3	B1 for $6(3 x-2)-5(x-4)$ or better seen B1 for $(x-4)(3 x-2)$ oe seen as denom or SC2 for final answer $\frac{13 x-32}{(x-4)(3 x-2)}$

MARK SCHEME for the May/June 2015 series

0580 MATHEMATICS

0580/42
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Question	Answer	Mark	Part marks
1 (a)	1848 final answer	2	M1 for $1650 \times\left(1+\frac{12}{100}\right)$ oe
(b) (i)	1750	2	M1 for $\frac{500}{9-5}[\times 5]$ or $[\times 9]$ or any equation which would lead to $4 x=500$ or $4 x=2500$ or $4 x=4500$ or $4 x=7000$ when simplified
(ii)	$64 \frac{2}{7} \text { or } 64.3 \text { or } 64.28 \text { to } 64.29$	1	
(c) (i)	$33: 20$ oe	2	B1 for 33: 6 or 20: 6 or 5.5 oe seen or 3.33...oe seen or M1 for two ratios with a common number of children implied by $20 k$ and $33 k$ seen, $k>0$
(ii)	236	3	M2 for $\frac{24}{2} \times 11+\frac{24}{3} \times 10$ oe or $((3 \times 11)+(2 \times 10)) \times 24 \div 6$ or $\frac{6}{6+20+33} \times x=24$
			or M1 for $\frac{24}{2} \times 11$ or $\frac{24}{2} \times 13$ soi or $\frac{24}{3} \times 10$ or $\frac{24}{3} \times 13$ soi oe or $24 \div 6$ soi
(d)	17[.00]	3	M2 for $20.40 \div\left(1+\frac{20}{100}\right)$ oe
			or M1 for $(100+20) \%$ oe associated with 20.40 seen

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

Question	Answer	Mark	Part marks
2 (a) (i)	66	1	
(ii)	24	1FT	FT 90 - their (a)(i)
(iii)	66	2FT	FT 90 - their (a)(ii) M1 for [BOD =] 180-48 or 180-2 \times their (a)(ii)
(iv)	114	1FT	FT 180 - their (a)(iii)
(b)	83.6 or 83.60 [...]	2	M1 for $\frac{1}{2} \times 15 \times 15 \times \sin (180-48)$ oe or $\frac{1}{2} \times 15 \times 15 \times \sin (180-2 \times$ their (a)(ii)) oe
(c)	Opposite angles add up to 180 OR Angle in a semicircle [=90]	1	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

(b) (c)	$95.5^{2}+83.1^{2}-2 \times 95.5 \times 83.1 \times$ $\cos 101$ 138.0... 110 or 109.7 to 109.8 $18.8 \text { or } 18.79[\ldots]$	M2 A2 4	M1 for $\cos 101=\frac{95.5^{2}+83.1^{2}-A B^{2}}{2 \times 95.5 \times 83.1}$ A1 for 19054.[...] also implies M2 B3 for 36.2 or 36.20 to 36.24 [1..] or M2 for $[\sin =] \frac{83.1 \times \sin 101}{138[.0 . .]}$ oe or M1 for correct implicit version After M0, SC1 for angle $A B C=42.76$ to 42.8 M1 for $46.2 \times \cos (45+21)$ oe After M0, SC1 for answer 42.2 or 42.20 to 42.21
$7 \quad$ (a) (i) (ii) (b)	Three correct blocks with heights $0.09,0.36,0.24$ with correct widths and no gaps Students have a greater range of estimates oe [On average] adults estimated a greater mass oe	4	M1 for $100,250,325,375,450$ soi M1 for $\Sigma f m$ with m 's in intervals including boundaries [15800] M1 (dep on 2nd M1) for their $\Sigma f m \div 50$ B2 for two correct blocks or B1 for one correct block or three correct frequency densities soi

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

$\begin{array}{ll}9 & \text { (a) } \\ & \text { (b) } \\ \text { (i) }\end{array}$	$4 x-3 x^{2} \text { or } x(4-3 x) \text { nfww } \quad \begin{aligned} & \text { final answer } \end{aligned}$	3	B2 for $3 x^{2}-6 x-6 x^{2}+10 x$ or M1 for $3 x^{2}-6 x$ or $-6 x^{2}+10 x$
	$(2+y)(3 w-2 x)$ oe final answer	2	M1 for $3 w(2+y)-2 x(2+y)$ or $2(3 w-2 x)+y(3 w-2 x)$
	$(2 x+5 y)(2 x-5 y) \quad$ final answer	2	M1 for $(2 x \pm 5 y)(2 x \pm 5 y)$ or $(2 x+k y)(2 x-k y)$ or $(k x+5 y)(k x-5 y), k \neq 0$ or $(2 x+5)(2 x-5)$ or $(2+5 y)(2-5 y)$
	$\frac{27 x^{6}}{64} \quad$ final answer	2	B1 for 2 [out of 3] elements correct in the right form in final answer or final answer contains 27 and 64 and $x^{[-] 6}$ or $\frac{3 x^{2}}{4}$ seen or $\frac{729 x^{12}}{4096}$ seen
	$2 n$ is even and subtracting 1 gives an odd number	1	Must interpret the $2 n$ as even or not odd and then the -1 oe
	$2 n+1$ oe final answer	1	
	their $(2 n+1)^{2}-(2 n-1)^{2}$	M1	Could use alternate correct expressions for consecutive odd numbers. Allow method and accuracy marks if correct. Could reverse the algebraic terms their $(2 n-1)^{2}-(2 n+1)^{2}$ leading to $-8 n$. Allow method and accuracy marks if correct.
	$4 n^{2}+4 n+1-4 n^{2}+4 n-1$	M1	Dep on M1 for expanding brackets in their expressions. If seen alone and completely correct then implies previous M1 Allow $4 n^{2}+4 n+1-\left(4 n^{2}-4 n+1\right)$
	$8 n$	A1	With no errors seen. After $\mathbf{0}$ scored, allow SC1 for two correctly evaluated numeric examples of subtracting consecutive odd squares isw

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	42

10 (a) (i) 9.43[..]
(ii) $(-3,5)$
(b) (i) (a) $\frac{1}{2}(\mathbf{a}+\mathbf{b})$ or $\frac{1}{2} \mathbf{a}+\frac{1}{2} \mathbf{b}$
(b) $\frac{1}{4}(\mathbf{a}+\mathbf{b})$ or $\frac{1}{4} \mathbf{a}+\frac{1}{4} \mathbf{b}$
(c) $\frac{1}{4}(\mathbf{b}-3 \mathbf{a})$ or $\frac{1}{4} \mathbf{b}-\frac{3}{4} \mathbf{a}$
(ii) $3: 4$ final answer
(c) (i) Triangle drawn at
$(-3,-3),(-6,-3),\left(-6,-4 \frac{1}{2}\right)$
(ii) $\left(\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right)$

1FT
2

2
$\mathbf{M 1}$ for $\mathbf{a}+\frac{1}{2} \boldsymbol{A} \boldsymbol{B}$ oe, e.g $\mathbf{a}+\boldsymbol{A M}, \boldsymbol{O} \boldsymbol{A}+\frac{1}{2} \boldsymbol{A} \boldsymbol{B}$
FT $\frac{1}{2}$ their (b)(i)(a) in terms of \mathbf{a} and/or \mathbf{b} in simplest form
$\mathbf{2} \quad \mathbf{M} 1$ for $-\mathbf{a}+$ their $\mathbf{(b) (i) (b)}$ or any correct route

3
M1 for $[\boldsymbol{A N}=]-\mathbf{a}+\frac{1}{3} \mathbf{b}$
A1 for $\frac{1}{4}: \frac{1}{3}$ oe or $\boldsymbol{A} \boldsymbol{N}=\frac{1}{3}(-3 \mathbf{a}+\mathbf{b})$
or $3 k$ to $4 k$
After $\mathbf{0}$ scored $\mathbf{S C 1}$ for final answer $4: 3$
B2 for 2 vertices correct in triangle or 3 correct co-ordinates soi in working
or
B1 for 1 vertex in triangle correct soi or triangle of correct size and orientation but wrong position
or
M1 for correct set up e.g.
$\left(\begin{array}{cc}-1.5 & 0 \\ 0 & -1.5\end{array}\right)\left(\begin{array}{lll}2 & 4 & 4 \\ 2 & 2 & 3\end{array}\right)$

SC1 for 1 correct row or column
or for $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$

11 (a)	$\frac{38}{56} \text { or } \frac{19}{28} \text { oe }$	4	[0.679 or 0.6785 to 0.6786] M3 for $\frac{4}{8} \times \frac{4}{7}+\frac{3}{8} \times \frac{5}{7}+\frac{1}{8}\left[\times \frac{7}{7}\right]$ oe or M2 for sum of two of the products isw $\frac{4}{8} \times \frac{4}{7}, \frac{3}{8} \times \frac{5}{7}, \frac{1}{8}\left[\times \frac{7}{7}\right] \mathrm{oe}$ or M1 for $\frac{4}{8} \times \frac{4}{7}$ or $\frac{3}{8} \times \frac{5}{7}$ oe isw or $\frac{1}{8} \times \frac{7}{7}$ isw
(b)	$\frac{60}{336} \text { or } \frac{5}{28} \text { oe }$	2	After $\mathbf{0}$ scored, $\mathbf{S C 1}$ for answer of $\frac{38}{64}$ oe M1 for $\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}$ or $\left(\frac{4}{8} \times \frac{3}{7} \times \frac{2}{6}\right)+3\left(\frac{4}{8} \times \frac{1}{7} \times \frac{3}{6}\right)$ oe

MARK SCHEME for the May/June 2015 series

0580 MATHEMATICS

0580/43
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	43

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Qu		Answers	Mark	Part Marks
1	(a) (i) (ii) (b) (i) (ii)	Triangle at $(-3,1),(-3,3),(-4,3)$ Triangle at $(-1,-1),(-2,-3),(-1,-3)$ Translation $\binom{-2}{2}$ oe Enlargement $(0,3)$ [factor] 3	2 1 1 1 1 1	SC1 for reflection in line $y=-1$ at $(1,-3)$, $(1,-5),(2,-5)$ or reflection in any vertical line or three correct points not joined SC1 for rotation 180° but other centre or three correct points not joined
2	(a) (i) (ii) (b)	$\begin{aligned} & 640 \times 1.02^{6} \text { oe } \\ & =720.7 \ldots \end{aligned}$ 3.02 or 3.020 to $3.024 \ldots$ nfww 874.8[0] final answer	M1 B1 4	Must be seen M3 for $[x=] \sqrt[4]{721 \div 640}$ or better (implied by answer of $1.03[02 \ldots]$ or $r=0.0302[4 \ldots]$ or M2 for $(\text { their } x)^{4}=721 \div 640$ or M1 for $640 \times(\text { their } x)^{4}=721$ oe M1 $1200 \times(1-0.1)^{3}$ oe

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	43

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	43

Qu		Answers	Mark	Part Marks
6	(a)	100 nfww	4	M3 for a correct calculation that would lead to the answer or $\mathbf{B 2}$ two correct relevant different size angles in their diagram or one relevant angle and total in their polygon or angle $E D A+$ angle $F A D=140$ or B1 for one relevant angle or total in their polygon
	(b) (i)	50	2	B1 for angle $A D C=80$ or angle $B A C=30$ or angle $A D B=50$ soi
	(ii)	41	2FT	FT 91 - their (b)(i) B1 for angle $X B C=41$
	(iii)	Similar	1	
	(c)	27.8 or 27.83	2	M1 for evidence of $\left(\frac{11}{10}\right)^{2}$ or 1.21 or $\left(\frac{10}{11}\right)^{2}$ or $0.826(4 \ldots)$
	(d) (i)	60	3	M2 for $\frac{n}{10}=\frac{360}{n}$ oe e.g. $\frac{180(n-2)}{n}=180-\frac{n}{10}$
				or B1 for exterior sum $=360$ or $180(n-2)$ seen
	(ii)	174	2	M1 for $\frac{\text { their } n}{10}$ or $\frac{360}{\text { their } n}$ for their $n<1800$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	43

Qu		Answers	Mark	Part Marks
7	(a) $\begin{aligned} & \text { (i) } \\ & \text { (ii) }\end{aligned}$	331 or 331.1 to 331.2 $\frac{A-\pi r^{2}}{\pi r}$ oe final answer	2	M1 for $\pi \times 6.2 \times 10.8+\pi \times 6.2^{2}$
			2	M1 for correct re-arrangement isolating term in l
				M1 for correct division by πr
	(b) (i)	4.39 or 4.390...	3	M2 for $18 \div\left(\frac{10}{4}+\frac{8}{5}\right)$
				$\text { or M1 for } \frac{10}{4} \text { or } \frac{8}{5}$
	(ii)	$x+x+4$ oe	B1	Must be seen
		$\frac{x}{5} \text { or } \frac{x+4}{10}$	B1	Must be seen
		$\frac{x+x+4}{\frac{x}{5}+\frac{x+4}{10}}=7 \text { oe }$	M2	or M1 for evidence of total distance \div their total time
		12	B1	
	(c) (i)	16.5[0] final answer	3	M2 for $19.8 \div\left(1+\frac{20}{100}\right)$ oe or M1 for evidence of $(100+20) \%$ associated with 19.8
	(ii)	$\frac{100 x}{100+y}$ final answer	3	B2 for $\frac{x}{1+\frac{y}{100}}$ or $\frac{x}{1+0.01 y}$ oe
				or $\mathbf{B 1}$ for $1+\frac{y}{100}$ or $100+y$ or $1+0.01 y$ seen

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	43

Qu		Answers	Mark	Part Marks
8	(a)	28.3 or $28.29 \ldots$360000	2	M1 for $180000 \div\left(\pi \times 45^{2}\right)$
	(b) (i)		3	M2 for $\frac{1}{2}(70+50) \times 40 \times 150$ oe
		360000		or M1 for $\frac{1}{2}(70+50) \times 40$ oe or their area of $A B C D \times 150$ dependent on their area being two dimensional
	(ii)	360	1FT	FT their (b)(i) $\div 1000$
	(c)	3 h 20 min	3	M2 for $180000 \div 15 \div 60$ (implied by 200) or M1 for $180000 \div 15$ (implied by 12000) or correct conversion of their seconds into h and min
	(d) (i)	$\frac{h}{40}=\frac{\frac{1}{2}(x-50)}{10}$ oe	M1	i.e. a correct statement from similar figures which must contain h, x and numbers
		$h=2(x-50)$	A1	Answer established with at least one more step and no errors or omissions
	(ii)	$\frac{1}{2}(x+50) 2(x-50)$	M1	
	(iii)	60.8 or 60.82 to 60.83	2	M1 for $\left(x^{2}-2500\right) \times 150=180000$ or better
	(iv)	21.7 or 21.65 to 21.66	1FT	FT for 2(their (d)(iii) - 50) evaluated only if $x>50$

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	43

\begin{tabular}{|c|c|c|c|c|}
\hline Qu \& \& Answers \& Mark \& Part Marks

\hline 9 \& (a)
(b)
(c)

(d) \& \begin{tabular}{l}
$$
\left(\begin{array}{ll}
2 & 13 \\
1 & 14
\end{array}\right)
$$

$\frac{1}{3}\left(\begin{array}{cc}3 & -2 \\ 0 & 1\end{array}\right)$ oe isw
$$
\begin{aligned}
& {[u=] 3} \\
& {[v=] 2}
\end{aligned}
$$

12 nfww

 \&

$$
2
$$

3

 \&

SC1 for one correct column or row

B1 for $k\left(\begin{array}{cc}3 & -2 \\ 0 & 1\end{array}\right)$ oe for $k \neq 0$ or $\frac{1}{3}\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$

B2 for two of

$$
3=u, 2 u+3 v=4 u, 4=2+v, u+4 v=3+4 v
$$ or $\mathbf{B 1}$ for one

or M1 for $\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)\left(\begin{array}{ll}0 & u \\ 1 & v\end{array}\right)=\left(\begin{array}{ll}0 & u \\ 1 & v\end{array}\right)\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$

B1 for $\left(\begin{array}{cc}3 & 2 u+3 v \\ 4 & u+4 v\end{array}\right)$ or $\left(\begin{array}{cc}u & 4 u \\ 2+v & 3+4 v\end{array}\right)$

M1 for $w \times 2-8 \times 3[=0]$ oe
\end{tabular}

\hline 10 \& (a)
(b)
(c)

(d) \& \begin{tabular}{l}
9

$4 x^{2}-2 x$ or $2 x(2 x-1)$ final answer $\frac{x+1}{2}$ oe final answer

$\frac{4 x+4}{x(x+2)}$ or $\frac{4 x+4}{x^{2}+2 x}$ or $\frac{4(x+1)}{x(x+2)}$

or $\frac{4(x+1)}{x^{2}+2 x}$ final answer

 \& \&

B1 for $[f(3)=] 5$ or $2(2 x-1)-1$

M1 for $(2 x-1)^{2}+(2 x-1)$

B1 for $\left[(2 x-1)^{2}=\right] 4 x^{2}-2 x-2 x+1$ or $(2 x-1)(2 x-1+1)$

M1 for $x=2 y-1$ or $y+1=2 x$

or $\frac{y}{2}=x-\frac{1}{2}$

B1 for $x(x+2)$ oe isw as common denominator

B2 for $4 x+4$ as numerator or B1 for $2(x+2)+2 x$ or better as numerator
\end{tabular}

\hline
\end{tabular}

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - May/June 2015	0580	43

Qu		Answers	Mark	Part Marks
$\mathbf{1 1}$	(a)	$\frac{5}{7}$ $\frac{n}{n+2}$ oe 7 $n+2$ oe 3 $n-2$ oe 22 \mathbf{n}	(b)	72
			B1 each	
	(c)	27	$\mathbf{2}$	M1 for $\frac{72}{74}$ or their $\frac{n}{n+2}=\frac{36}{37}$

MARK SCHEME for the March 2015 series

0580 MATHEMATICS

0580/42
Paper 4 (Paper 42 - Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0580	42

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Qu.	Answers	Mark	Part Marks
1 (a) (b) (c) (d) (e) (f)	$\begin{aligned} & \frac{1.5}{100} \times 450000 \text { oe } \\ & 6000 \\ & 376.25 \text { cao final answer } \\ & 22.4 \\ & 5184 \\ & 9023 \end{aligned}$	1 3 2 2 2 3	Accept equivalent methods M2 for $\frac{6750}{112.5} \times 100$ oe or M1 for 112.5% associated with 6750 oe B1 for 21.5 and 17.5 seen M1 for 200^{2} or 2^{2} seen oe M1 for $12 \times 16 \times 27$ M1 for $12000 \div 1.33$ A1 for 9022.55 to 9022.56 or 9022.6 or 9020 B1indep for their answer rounded to the nearest euro if possible
	$\begin{aligned} & \in \text { cao } \\ & \{3\} \\ & \varnothing \text { or }\} \\ & 5 \\ & \subset \end{aligned}$	1 1FT 1 1FT 1	B2 for 8 or 9 numbers correct B1 for 6 or 7 numbers correct FT their intersection of all 3 sets - their diagram FT their set B on diagram

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0580	42

(ii)		1	
3 (a) (b) (c) (d)	$20-22$ smooth correct curve through correct points line $y=\frac{1}{2}(x+1)$ ruled and -2.85 to -2.95 -1 0.85 to 0.95 tangent ruled -1.1 to -1.5	3 4	B2 for 3 correct B1 for 2 correct B3FT for 8 or 9 correct plots B2FT for 6 or 7 correct plots B1FT for 4 or 5 correct plots FT their table Line must be fit for purpose B3 for correct line and 2 correct values or $\mathbf{B 2}$ for correct line and 1 correct value or B1 for correct line or SC2 for no/wrong line and 3 correct values or SC1 for no/wrong line and 2 correct values No daylight between tangent and curve at point of contact. Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x=-1.85$ and $x=-1.65$ dep on B1 M1 for rise/run also dep on any tangent drawn or close attempt at tangent at any point Must see correct or implied calculation from a drawn tangent Accept M1 for answer in range 1.1 to 1.5 after B1
4 (a) (b)	$(11 y-m)(11 y+m)$ final answer $\frac{3 x^{2}+5 x-14}{(3 x-5)(x-1)}$ final answer	2 3	B1 for $11 y$ seen B1 for denom $(3 x-5)(x-1)$ oe isw and B1 for $3 x^{2}+6 x-5 x-10$ soi

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0580	42

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0580	42

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0580	42

(ii) (b) (c) (d)	```Enlargement [centre] \((-2,1)\) [s.f.] -2 vertices at \((-3,4)(-3,5)(-3,6)\) \((-2,6)\) vertices at \((7,3)(7,4)(7,5)(6,5)\) reflection \(x\)-axis oe```	1 1 1 2 2 2	SC1 for translation by $\binom{2}{k}$ or $\binom{k}{1}$ SC1 for reflection in $y=1$ or reflection in any vertical line
8 (a) (i) (ii) (b)	47.7 or 47.74 to 47.75 252 or 252.3 to $252.4 \ldots$. 139 or 139.3 to 139.4... nfww	3 6 5	M1 for [arc =] 68-2 $\times 24$ or $24+24+\frac{x}{360} \times 2 \pi \times 24=68$ M1 for $[x=]$ their $\operatorname{arc} \times 360 \div(2 \times \pi \times 24)$ M1 for $r=\frac{20}{2 \pi}$ or $\left(\frac{\text { their } 47.7}{360} \times 2 \times \pi \times 24\right) \div(2 \pi)$ A1 for $r=3.18$ or 3.182 to $3.183 \ldots$ or $\frac{10}{\pi}$ M1 for $h^{2}=24^{2}$-their r^{2} A1 for $h=23.8$ or $23.78 \ldots$ to 23.79 M1dep on M1 earned for $V=\frac{1}{3} \pi \times$ their $h \times$ their r^{2} M4 for $8^{2}+\frac{1}{4} \pi \times 8^{2}+\frac{1}{2} \pi \times\left(\frac{8}{2}\right)^{2}$ or M1 for $\frac{1}{4} \pi \times 8^{2}$ and M1 for $\frac{1}{2} \pi \times\left(\frac{8}{2}\right)^{2}$ and M1 for 8^{2} added to at least one term with π
$9 \quad$ (a) (b)	$140<h \leqslant 144$ 144.875 nfww	$\begin{aligned} & 1 \\ & 4 \end{aligned}$	M1 for at least 4 correct mid-values soi M1 for $\sum f x$ where x is in the correct interval, allow one further error/omission M1 dep for $\div 40$ dependent on second method mark

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - March 2015	0580	42

(c)	4 correct blocks	4	B3 for 3 correct blocks B2 for 2 correct blocks B1 for 1 correct block or at least 3 correct frequency densities ($1.4,1,1,0.65$)
10 (a) (b) (c) (d)	```\(4 x+10 y<80\) \(y>x\) \(y \leqslant 6\) or \(y<7\) ruled broken line through \((5,6)\) to \((10,4)\) ruled broken line \(y=x\) ruled solid line \(y=6\) or broken \(y=7\) correct region indicated 76```	1 1 1 B2 B1 B1 B1 2	With no errors seen Accept $0 \leqslant y \leqslant 6$ or $0<y \leqslant 6$ or $0 \leqslant y<7$ or $0<y<7$ SC1 for correct only at $(5,6)$ or $(10,4)$ Must be consistent with their (b) SC1 for (4, 6) indicated or $4 x+10 y$ evaluated for (x, y) in their region, x, y integers
11 (a) (b) (c) (d)	30 10 $n(n+1)$ oe $\frac{1}{2} n(n-1)$ oe	1 1 1 1 2	B1 for $a n^{2}+b n+c a, b, c$ numeric $a \neq 0$ B1 for using $\frac{1}{2}$ oe in expression of form $\frac{1}{2}\left(a n^{2}+b n+c\right) \quad a \neq 0$ or $k n(n-1) \quad k \neq 0$

MARK SCHEME for the October/November 2014 series

0580 MATHEMATICS

0580/42
Paper 4 - Extended, maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	42

Abbreviations

cao	correct answer only dep dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Qu.	Answer	Mark	Part marks
1 (a) (i)	49.5[0]	3	M2 for $16.5[0] \div 5 \times(5+3+7)$ or M1 for $16.5[0] \div 5$
(ii)	66	1FT	FT their (a)(i) $\div 75 \times 100$ to 3 sf or better
(b)	2 hours 39 mins 45 secs	3	B2 for 159.75 oe, e.g. 2.6625 [h] 9585 [s] or M1 for 3 hrs 33 mins oe $/(2+9+1)$ oe
(c)	18.75 final answer	3	M2 for $16.5[0] \div 0.88$ oe or M1 for 16.5[0] associated with 88[\%]
2 (a)	$x>0.5$ oe final answer nfww	3	B2 nfww for 0.5 with no/incorrect inequality or equals sign as answer or M2 for $7 x+15 x>6+5$ or better or $-6-5>-7 x-15 x$ or better or M1 for 6-15x seen
(b) (i)	$(p-2)(q+4)$ final answer	2	M1 for $q(p-2)+4(p-2)$ or $p(q+4)-2(q+4)$
	$(3 p-5)(3 p+5)$ final answer	1	
(c)	$(5 x-9)(x+2)$	M2	M1 partial factorisation, e.g. $x(5 x-9)+2(5 x-9)$ or $\mathbf{S C 1}$ for $(5 x+a)(x+b)$ where $a b=-18$ or $a+5 b=1$
	$\frac{9}{5}$ oe and -2 final answer	B1	

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	42

3 (a) (b) (c) (i) (ii)	$\begin{aligned} & 35<t \leqslant 40 \\ & 22.5,27.5,32.5,37.5,42.5,47.5 \\ & (2 \times 22.5+6 \times 27.5+7 \times 32.5+ \\ & 19 \times 37.5+9 \times 42.5+7 \times 47.5) \\ & \div 50 \quad \text { or their } \sum f \\ & \quad 37.3 \\ & 15,19,16 \\ & \text { rectangular bars of height } \\ & 1,3.8 \text { and } 1.6 \\ & \text { correct widths of } 15,5,10 \\ & \text { and no gaps } \end{aligned}$	1 M1 M1 M1dep A1 1 B2FT B1	At least 4 correct mid-values soi $\sum f x$ where x is in the correct interval allow one further slip $\begin{aligned} & {[45+165+227.5+712.5+382.5+332.5} \\ & =1865] \end{aligned}$ Dependent on second method SC2 for correct answer with no working FT their (c)(i), on correct boundary lines B1FT for 2 correct heights If 0 scored for heights then SC1 for 3 correct frequency densities soi
$4 \quad$ (a) (b) (i) (ii) (iii) (c) (i) (ii)	Enlargement [SF]-1/2 oe [centre] $(2,5)$ Image at $(-2,6),(-8,3),(-4,3)$ Image at $(3,-2),(3,2),(6,4)$ Image at $(-5,1),(-3,-2),(1,-2)$ $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ Rotation, 90° [anticlockwise] oe origin oe	2 2 2	B1 for each SC1 for reflection in any vertical line or for 3 correct points not joined SC1 for rotation 90° [anti clockwise] around origin at $(-3,2)(-3,-2)(-6,-4)$ or for 3 correct points not joined SC1 for translation by $\binom{-1}{k}$ or $\binom{k}{-5}$ or for 3 correct points not joined B1 for a correct row or column B1 for two elements correct

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	42

5 (a) (i)	8	1	
(ii)	4	2	$\text { M1 for }[g(17)=] \frac{7}{14} \text { or } 2\left(\frac{7}{x-3}\right)^{2}+7\left(\frac{7}{x-3}\right)$
(b)	4 or - 4	3	M2 for $x^{2}=16$ or $x^{2}-16=0$ or M1 for $7=(x-3)(x+3)$ or better
(c)	$2 x^{2}+7 x-11[=0]$ soi	B1	
	$\frac{-7 \pm \sqrt{(7)^{2}-4(2)(-11)}}{2(2)}$	$\begin{aligned} & \text { B1FT } \\ & \text { B1FT } \end{aligned}$	FT $2 x^{2}+7 x \pm$ their $k[k \neq 0]$ oe B1FT for $\sqrt{7^{2}-4(2)(-11)}$ or better or $\left(x+\frac{7}{4}\right)^{2}$ oe If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$, B1FT for - 7 and 2(2) or better or $-\frac{7}{4}+o r-\sqrt{\frac{137}{16}} \text { oe }$
	$-4.68,1.18$ final answers	B1B1	If B0, SC1 for answers -4.7 and 1.2 or $-4.676 \ldots$ and 1.176 .. seen or for -4.68 and 1.18 seen or for answer 4.68 and -1.18
(d)	$\frac{x+2}{5} \text { or } \frac{x}{5}+\frac{2}{5}$	2	M1 for correct first step or better, e.g. $5 y=x+2$ or $x=\frac{y+2}{5}$ or $x=5 y-2$ or $y+2=5 x$ or $\frac{y}{5}=x-\frac{2}{5}$
(e)	-2	1	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	42

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	42

(c) (d)	15 24.4[4..] to 24.45	崖	B3 for answer 60 or M3 for $75-\sqrt{145^{2}-\left(55^{2}+120^{2}\right)}$ oe M2 for $\sqrt{145^{2}-\left(55^{2}+120^{2}\right)}$ oe or M1 for $\sqrt{55^{2}+120^{2}}$ M2 for $\cos ^{-1}\left(\sqrt{55^{2}+120^{2}} / 145\right)$ oe, e.g. or $\sin ^{-1}(75$ - their (c) $) / 145$ or $\tan ^{-1}\left((75-\operatorname{their}(\mathbf{c})) / \sqrt{55^{2}+120^{2}}\right)$ or M1 for $\cos =\sqrt{55^{2}+120^{2}} / 145$ oe or $\sin =(75-$ their $(\mathbf{c})) / 145$ or $\tan =(75-$ their $(\mathbf{c})) / \sqrt{55^{2}+120^{2}}$
8 (a) (b) (c) (i) (ii) (d) (e)	Angle $L P Q=32$ soi $58^{2}+74^{2}-2 \times 58 \times$ $74 \cos$ their P 39.50[1...] $\sin P Q L=\frac{58 \sin \text { their } P}{39.5}$ oe 51.1 or 51.08 to 51.09 322 [0]13[.1] or 13.08 to 13.09 17.8 or 17.77 to 17.78 30.7 or 30.73 to $30.74 \ldots$	B1 M2 A2 M2 B1 2 1FT 3	M1 for correct implicit cos rule A1 for 1560.3 to 1560.4 or 1560 M1 for $\frac{\sin P Q L}{58}=\frac{\sin (\text { their } P)}{39.5}$ oe M1 for $180+142$ oe FT their (b) - 38 M1 for $74 \div 2.25$ oe soi by $32.888 \ldots$ to 3 sf or better M1 for dist or speed $\div 1.85$ M2 for $58 \sin$ their P oe or $39.5 \sin$ their (b) or M1 for $\frac{x}{58}=\sin$ their P oe or $\frac{x}{39.5}=\sin$ their (\mathbf{b})
$9 \quad$ (a) (b) (i) (ii) (iii)	28 45 17 21 45 66 $4 n-3$ oe 237 50	$\begin{aligned} & 1,1 \\ & 1 \\ & 1 \\ & 2 \\ & 1 \\ & 2 \mathrm{FT} \end{aligned}$	M1 for $4 n+k$ FT their $\mathbf{(b) (i) = 2 0 0}$ solved and then answer truncated dep on linear expression of form $a n+k$ M1 for their $4 n-3=200$ or their $4 n-3 \leqslant 200$

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	42

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
(c) \\
(d)
\end{tabular} \& \(p=2\) and \(q=-5\) with some correct supporting working leading to the solutions
\[
2 n^{2}-n \text { or } n(2 n-1)
\] \& 5

2 \& | M2 for any 2 of $p+q+3=0$ oe, $\begin{aligned} & 2^{2} p+2 q+3=1 \text { oe, } 3^{2} p+3 q+3=6 \mathrm{oe}, \\ & 4^{2} p+4 q+3=15 \mathrm{oe}, \\ & 5^{2} p+5 q+3=\text { their } 28 \text { oe, etc. } \end{aligned}$ |
| :--- |
| or M1 for any one of these |
| M1 indep for correctly eliminating p or q from pair of linear equations |
| A1 for one correct value |
| If 0 scored $\mathbf{S C 1}$ for 2 values that satisfy one of their original equations |
| After M0, 2 correct answers SC1 |
| B1 for answer $2 n^{2}+k[n]$ |
| or M1 for their quadratic from (c) + their linear from (b)(i) |

\hline | 10 (a) (i) |
| :--- |
| (ii) | \& $\frac{1}{36}$ final answer $\frac{1}{12}$ final answer \& 2

3 \& | M1 for $\frac{1}{6} \times \frac{1}{6}$ |
| :--- |
| M2 for $3\left(\frac{1}{6} \times \frac{1}{6}\right)$ oe |
| or M1 for identifying 3 correct pairs $(4,6),(6,4)$ and $(5,5)$ |

\hline | (b) |
| :--- |
| (c) | \& | 7 |
| :--- |
| Refers to most combinations oe $\frac{141}{1296} \text { oe }\left[\frac{47}{432}\right]$ | \& 1

1

5 \& | Dependent on previous mark |
| :--- |
| M4 for $\frac{2}{36}+\left(\left[1-\frac{3}{36}\right] \times \frac{2}{36}\right)+\left(\frac{1}{36} \times \frac{3}{36}\right)$ oe or M3 for 2 correct probabilities shown added from those above |
| or M1 for $\left(1-\frac{3}{36}\right) \times \frac{2}{36}$ seen oe And M1 for $\frac{1}{36} \times \frac{3}{36}$ seen oe or $\frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6}$ oe alone or added to a probability not of the form $\frac{n}{36}$ |

\hline
\end{tabular}

MARK SCHEME for the October/November 2014 series

0580 MATHEMATICS

0580/43
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	43

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Qu.	Answers	Mark	Part Marks
1 (a) (i) (ii) (iii) (b)	5.37[1...] 54.1 or 54.11 to 54.12 65.8 263.2 or 263	3 2 3FT	M1 for $\left[A D^{2}=\right] 2.6^{2}+4.7^{2}$ oe or better M2 for $\tan [B C D=] \frac{4.7}{(17-11-2.6)}$ oe or B1 for 3.4 seen M1 for $\frac{11+17}{2} \times 4.7$ oe FT their (a)(iii) $\times 4$ correctly evaluated M2 for their (a)(iii) $\times\left(\frac{9.4}{4.7}\right)^{2}$ oe or M1 for [scale factor $=$] $\left(\frac{9.4}{4.7}\right)^{2}$ or $\left(\frac{4.7}{9.4}\right)^{2}$ soi
2 (a) (i) (ii) (b)	$\frac{920}{8} \times 7[=805] \text { oe }$ 30.8 or 30.76 to 30.77 1211 final answer	2 5	$\frac{2990}{26} \times 7[=805]$ M1 for $\frac{8}{(11+8+7)}[\times 100]$ B4 for $13926.5[0]$ [area A total sales] or B3 for 11040 [area B] and 10867.50 [area C] or 21907.5 [area B + area C] or B2 for 11040 [area B] or 10867.50 [area C] or M1 for 736 [B tickets] and M1 for 483 [C tickets] After 0 scored SC2 for answer of 1196 or SC1 for 13754 (A total sales)

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	43

\begin{tabular}{|c|c|c|c|}
\hline (c) \& 37720 \& 3 \& \begin{tabular}{l}
M2 for \(\frac{35834}{0.95}\) oe \\
or \\
M1 for 35834 associated with 95[\%]
\end{tabular} \\
\hline \begin{tabular}{l}
(a) (i) \\
(ii) \\
(iii) \\
(b) \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
52 \\
Angles in same segment \\
104 \\
Angle at centre is twice angle at circumference \\
34 \\
Angle between tangent and radius
\[
=90^{\circ}
\] \\
7.65 to 7.651 \\
49.3 or 49.33 to \(49.34 \ldots\)
\end{tabular} \& \begin{tabular}{l}
1
1dep \\
1 \\
1 \\
1 \\
4 \\
3
\end{tabular} \& \begin{tabular}{l}
Accept same arc, same side of same chord \\
Accept double, \(2 \times\) but not middle, edge \\
Accept right angle, perpendicular \\
M2 for \(8.92+72-2 \times 8.9 \times 7 \times \cos 56\) or \\
M1 for correct implicit formula and \\
A1 for 58.5 to 58.6 \\
M2 for \([\sin B E C=] \frac{7 \sin 56}{\text { their } \mathbf{(b) (i)}}\) oe \\
or \\
M1 for \(\frac{\sin 56}{\text { their } \mathbf{(b) (\mathbf { i })}}=\frac{\sin B E C}{7}\) oe
\end{tabular} \\
\hline \begin{tabular}{l}
(i) \\
(ii) \\
(iii) \\
(b) \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Ariven with comparable form for both shown or difference between the two fractions shown \\
\(\frac{6}{15}\) oe \(\frac{7}{15}\) oe \\
Completes tree diagram correctly
\[
\frac{126}{350} \text { oe }\left[\frac{9}{25}\right]
\]
\end{tabular} \& 2
3

3 \& | Accept probabilities changed to decimals or percentages (to 2sf or better) |
| :--- |
| M1 for $\frac{3}{5} \times \frac{2}{3}$ |
| M2 for $\frac{3}{5} \times \frac{1}{3}+\frac{2}{5} \times \frac{2}{3}$ oe $1-$ their (a)(ii) $-\frac{2}{5} \times \frac{1}{3}$ or |
| M1 for $\frac{3}{5} \times \frac{1}{3}$ or $\frac{2}{5} \times \frac{2}{3}$ seen |
| B2 for 5 values correct or |
| B1 for 1 value correct |
| M1 for $\frac{3}{5} \times \frac{6}{7} \times \frac{7}{10}$ |

\hline
\end{tabular}

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	43

(iii)	$\frac{344}{350} \text { oe }$	3	M2 for 1 -their $\frac{2}{5} \times$ their $\frac{1}{7} \times$ their $\frac{3}{10}$ oe or $\frac{3}{5}+\frac{2}{5} \times \frac{6}{7}+\frac{2}{5} \times \frac{1}{7} \times \frac{7}{10}$ M1 for their $\frac{2}{5} \times$ their $\frac{1}{7} \times$ their $\frac{3}{10}$ oe or identifies the 7 routes or attempt to add 7 probabilities with at least 5 correct $\frac{9}{25}+\frac{27}{175}+\frac{3}{50}+\frac{9}{350}+\frac{6}{25}+\frac{18}{175}+\frac{1}{25}$ oe
(i) (ii) (iii) (iv) (b)	$\begin{aligned} & \left(\begin{array}{cc} 0 & -4 \\ 4 & 0 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 1 \\ 1 & -1 \end{array}\right) \\ & \left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right) \\ & \binom{-13}{5} \\ & \left(\begin{array}{ll} 1 & 2 \\ 0 & 1 \end{array}\right) \end{aligned}$	2 2 3	B1 for three correct elements B1 for either correct in this form M1 for understanding to find the inverse of \mathbf{Q} and M1 for det $=1$ or for $k\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right) k \neq 0$ Alternative $\left(\begin{array}{cc} 1 & -2 \\ 0 & 1 \end{array}\right)\left(\begin{array}{ll} a & b \\ c & d \end{array}\right)=\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)$ Leading to $a-2 c=1$ and $c=0$ then $a=1$ and $b-2 d=1$ and $d=1$ then $b=2$ M2 all four equations, M1 for a pair of correct equations
6 (a) (i) (ii) (iii)	$\frac{x^{8}}{3}$ final answer $15 x^{7} y^{3}$ final answer $16 x^{8}$ final answer	1 2 2	M1 for 2 elements correct M1 for $16 x^{k}$ or $k x^{8}$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	43

\begin{tabular}{|c|c|c|c|}
\hline (b)

(c) \& \begin{tabular}{l}
$\sqrt{([-] 7)^{2}-4.3-12}$ or better and $p=[--] 7$ and $r=2(3)$ oe
$$
3.48,-1.15 \text { сао }
$$

$\frac{x+5}{x^{2}}$ or $\frac{1}{x}+\frac{5}{x^{2}}$ final answer nfww

 \&

B1

B1

B1B1

3

 \&

or for $\left(x-\frac{7}{6}\right)^{2}$

Must see $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ or both or for $\frac{7}{6} \pm \sqrt{4+\left(\frac{7}{6}\right)^{2}}$

After B0,

SC1 for answer 3.5 and -1.1

or $3.482 \ldots$ and -1.149 to -1.148 seen or for $3.48,-1.15$ seen or for answer -3.48 and 1.15

B1 for $(x+5)(x-5)$

and

B1 for $x^{2}(x-5)$
\end{tabular}

\hline | $7 \quad$ (a) |
| :--- |
| (b) (i) |
| (ii) |
| (c) (i) |
| (ii) | \& | $\begin{aligned} & \frac{1}{2} \times 8 \times 8 \times \sin 56 \text { oe } \\ & 26.52 \text { to } 26.53 \\ & 72 .[0] \text { or } 71.87 \text { to } 72.0 \\ & 21.1 \text { or } 21.2 \text { or } 21.14 \text { to } 21.17 \\ & \frac{30}{360} \times \pi \times r^{2}-\frac{1}{2} \times r^{2} \times \sin 30 \text { oe } \\ & \frac{1}{12} \times \pi \times r^{2}-\frac{1}{4} \times r^{2} \\ & \frac{1}{4} r^{2}\left(\frac{1}{3} \pi-1\right) \end{aligned}$ |
| :--- |
| 20.6 or 20.7 or 20.55 to 20.71 | \& | M1 |
| :--- |
| A1 |
| 3 |
| 3 |
| M2 |
| A1 |
| A1 |
| 3 | \& | or $[1 / 2 \times 2] 8 \sin 28 \times 8 \cos 28$ or $[1 / 2 \times 2] \times 7.06 \ldots \times$ 3.75... |
| :--- |
| M2 for $26.5 /\left(\pi \times 6.5^{2}\right) \times 360$ oe or M1 for $\frac{x}{360} \times \pi \times 6.5^{2}=26.5$ or better M2 for $\frac{\text { their } \mathbf{(b) (i)}}{360} \times \pi \times 2 \times 6.5+2 \times 6.5$ oe or M1 for $\frac{\text { their } \mathbf{(b)} \mathbf{(i)}}{360} \times \pi \times 2 \times 6.5$ oe or $\frac{\text { their }(\mathbf{a})}{0.5 \times 6.5}$ M1 for $\frac{30}{360} \times \pi \times r^{2}$ or $\frac{1}{2} \times r^{2} \times \sin 30$ |
| Dep on M2 A1 and no errors seen |
| M2 for $\left[r^{2}=\right] \frac{5}{1 / 4(1 / 3 \pi-1)}$ or M1 for one correct rearrangement step to r from $\frac{1}{4} r^{2}\left(\frac{1}{3} \pi-1\right)=5$ |

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	43

8 (a) (i) (ii) (b) (i) (ii) (iii) (c) (d) (i) (ii)	$(1,2)$ $y=3 x-1$ cao final answer $(x+5)(x-2)$ isw solutions $\begin{array}{ll} {[a=]} & -5 \\ {[b=]} & 2 \\ {[c=]} & -10 \\ x=-1.5 \end{array}$ Inverted parabola x-axis intercepts at -2 and 9 y-axis intercept at 18 $\begin{aligned} & p=6 \\ & q=43 \end{aligned}$	$1+1$ 3 2 3FT 1FT B1 B2 B1 3 1FT	M1 for gradient $=\frac{8--4}{3--1}$ oe and M1 for substituting $(3,8)$ or $(-1,-4)$ into their $y=3 x+\mathrm{c}$ or for finding y-intercept is -1 SC1 for $(x+a)(x+b)$ where $a b=-10$ or $a+b=3$ B1FT for each of their 5 and their -2 from (b)(i) and $\mathbf{B 1}$ for $\mathrm{c}=-10$ FT $x=($ their $(a+b)) / 2$ B1 for each After B0 allow SC1 for $(9-x)(2+x)$ oe B2 for $(x+6)^{2}-43$ or $p=6$ or $q=43$ or M1 for $(x+6)^{2}$ or $x^{2}+p x+p x+p^{2}$ and M1 for $-7-(\text { their } 6)^{2}$ or $p^{2}-q=-7$ or $2 p=12$ FT - their q
9 (a) (i) (ii) (b) (i) (ii) (iii)	7 17 64 40 $1.6[0]$	1FT 2 2 2 2FT	M2 for $\frac{16 \times 11+17 \times 10+18 p+19 \times 4+20 \times 8}{11+10+4+8+p}=17.7$ or better or M1 for sum of two correct products or better or for [total =] $11+10+4+8+p$ and B1 for $582+18 p=17.7(33+p)$ STRICT FT median for their p if integer M1 for $\frac{320}{6.4} \times 1.28$ oe M1 for $\frac{320}{480} \times 60$ oe FT their (b)(i) / their (b)(ii) evaluated correctly to 2dp M1 for their (b)(i) / their $\mathbf{(b) (i i)}$ or $\frac{480}{6.4} \times 1.28 \div 60$

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE - October/November 2014	0580	43

(c)	9.9125 cao	5	B4 for answer 9912.5 or M1 for 25 to 35×290 to 310 oe and B1 for 32.5 used and B1 for 305 or 5 mins 5 secs used and M1 indep for any correct conversion seen m to km
$10 \text { (a) (i) }$ (ii) (b)	$5 x+14$ final answer 14.2	2 3	M1 for $5 x+k$ or $k x+14$ M1 for $5 x=32-14$ FT their expression in (a)(i) A1FT for $x=3.6$
	$8 a-3 b+14=32.5$ or better $5 a+4 b+13.5=39.75$ or better	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 8 a-3 b=18.5 \\ & 5 a+4 b=26.25 \end{aligned}$
	Equates coefficients of either a or b $\begin{aligned} & 40 a-15 b=92.5 \\ & 40 a+32 b=210 \end{aligned}$ or $\begin{aligned} & 32 a-12 b=74 \\ & 15 a+12 b=78.75 \end{aligned}$	M1	or rearranges one of their equations to make a or b the subject e.g. $a=\frac{3 b+18.5}{8}$
	Adds or subtracts to eliminate $\begin{aligned} 47 b & =117.5 \\ 47 a & =152.75 \end{aligned}$ $[a=] 3.25$	M1	Dep on previous method or correctly substitutes into the second equation e.g. $\frac{5(3 b+18.5)}{8}+4 b=26.25$
	$[b=] 2.5$	A1	After M0 scored SC1 for 2 correct values with no working or for two values that satisfy one of their original equations

MARK SCHEME for the May/June 2014 series

0580 MATHEMATICS

0580/41
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	41

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Qu		Answers	Mark	Part Marks
1	(a) (i) (ii) (iii) (iv) (b) (c)	$\left(\begin{array}{cc} 6 & 4 \\ -2 & 2 \end{array}\right)$ Not possible $\left(\begin{array}{cc}6 & 4 \\ -2 & 2\end{array}\right)$ $\frac{1}{5}\left(\begin{array}{rr}1 & -2 \\ 1 & 3\end{array}\right)$ oe isw 1 column in \mathbf{C} and 2 rows in \mathbf{D} Enlargement [Factor] 2 [Centre] $(0,0)$ oe	1 2 2 1 1 1 1	B1 for one row or column correct B1 for $\frac{1}{5}\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ seen or $k\left(\begin{array}{rr}1 & -2 \\ 1 & 3\end{array}\right)$ seen Any clear indication
2	(a) (b) (c) (d)	8 [Distance $=] 36$ their $36 \div 3[=12]$ oe 200 Horizontal line at 36 to 1345 (their 1345,36) joined to $(1642,0)$	2 B1 M1 2 $\begin{gathered} \mathbf{1} \\ \mathbf{1 F T} \end{gathered}$	M1 for $12 \div 1.5$ oe M1 for $12 \times 1000 \div 60$ oe e.g. $36000 \div 180$
3	(a) (b)	62705 $10.9 \text { or } 10.88 \ldots$	2 3	M1 for $75246 \div 6$ soi by 12541 or 75246×5 M2 for $\frac{(150675-135890)}{135890} \times 100$ oe or M1 for correct fraction soi by $0.1088 \ldots$ or $\frac{150675}{135890} \times 100$ soi by $110.88 \ldots$

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	41

Qu		Answers	Mark	Part Marks
	(c) (d) (i) (ii)	127000 59112 to 59113 or 59100 or 59110 or 59119 to 59120 or 59100 nfww (a) 0.0125 (b) 7580 or 7582 or 7581 or 7583 nfww	3 1	M2 for $135890 \div 1.07$ oe or M1 for 135890 associated with 107% M2 for $\pi \times 21 \times\left(30^{2}-2^{2}\right)$ oe Or M1 for $\pi \times 21 \times 30^{2}$ or $\pi \times 21 \times 2^{2}$ M1 for $21 \times 29.7 \times$ their 0.0125 [=7.796 or 7.8[0]] and M1 for their $\mathbf{(d)} \mathbf{(i)} \div(21 \times 29.7 \times$ their 0.0125$)$ A1 for 7580 to 7583.2 (non integer) If 0 then $\mathbf{S C} 1$ for their $\mathbf{(d)} \mathbf{(i)} \div(21 \times 29.7 \times 0.125)$
4	(a) (b) (c) (i) (ii) (iii) (iv) (v) (d)	$4-x$ correctly placed $5-x$ correctly placed 7 correctly placed $\begin{aligned} & 4+11+(6-x)+x+9+(4-x)+ \\ & (5-x)+7=40 \text { oe } \\ & 46-2 x=40 \text { nfww } \\ & x=3 \end{aligned}$ $\frac{9}{40} \text { or } 0.225 \text { or } 22.5 \%$ 2 15 25 4 Correct region shaded.	$\begin{gathered} 1 \\ 1 \\ 1 \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ 1 \\ 1 \mathrm{FT} \\ \hline 1 \mathrm{FT} \\ \hline 1 \mathrm{FT} \\ 1 \\ 1 \end{gathered}$	SC3 for 1, 2 and 7 all correctly placed instead of expressions in x FT from their Venn diagram, condone omission of one subset Must be in the form $a+b x=c$, ie each side simplified, or better ISW cancelling or conversion after correct answer seen FT from their Venn diagram and their x provided $\mathrm{n}\left(\mathrm{B} \cap \mathrm{P} \cap \mathrm{T}^{\prime}\right) \neq 5$ FT from their Venn diagram FT from their Venn diagram

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	41

Qu		Answers	Mark	Part Marks
5	(a) (b) (c) (d) (e) (f)	[0]44 to [0]48 12.6 to 13.2 340 1:150000 Arcs for perp bisector of $S L$ Ruled perp bisector of $S L$ Arcs for bisector of angle $P S L$ Ruled bisector of angle $P S L$ B marked within accuracy 3.375	2 1 2 1 1 1 1 1 2	B1 for 8.4 to 8.8 seen M1 for $\times 100000$ soi Two pairs of correct arcs Within tolerance of overlay Marks on $P S$ and $S L$ plus one pair of correct arcs Within tolerance of overlay Within tolerance of overlay Dep on two correct bisectors drawn M1 for 1.5×1.5^{2} or $(2 / 3)^{2}$ seen
6	(a) (i) (ii) (iii) (b)	$\begin{aligned} & 0.6 \text { oe } \\ & 1500 \\ & 0.03 \text { oe } \\ & \frac{112}{132} \text { oe } \frac{28}{33}=0.848[4 \ldots] \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	M1 for $0.2+0.4$ M1 for 0.1×0.3 M2 for $1-\frac{5}{12} \times \frac{4}{11}$ or $\frac{7}{12} \times \frac{5}{11}+\frac{5}{12} \times \frac{7}{11}+\frac{7}{12} \times \frac{6}{11}$ or $\frac{7}{12}+\frac{5}{12} \times \frac{7}{11}$ or M1 for addition of any two of $\frac{7}{12} \times \frac{5}{11}, \frac{5}{12} \times \frac{7}{11}, \frac{7}{12} \times \frac{6}{11}$ or sum of 3 products with an error in the numerator of one product or for $\frac{5}{12} \times \frac{4}{11}$ identified

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	41

Qu		Answers	Mark	Part Marks
7	(a) (i) (ii) (b) (i) (ii)	Image: $(-4,-3),(-4,-1),(-3,-1)$ Image: $(1,-1),(3,-1),(3,-2)$ Image: $(2,1),(2,3),(4,3)$ Stretch [factor] 2 Invariant line y-axis oe	2	$\mathbf{S C} 1$ for translation $\binom{-5}{k}$ or $\binom{k}{-4}$ SC1 for rotation about the origin but 90° anticlockwise B2 for 2 correct vertices plotted or SC2 for 3 vertices shown in working or SC1 for 2 vertices shown in working or M1 $\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right) \times\left(\begin{array}{lll}1 & 1 & 2 \\ 1 & 3 & 3\end{array}\right)$ Accept $x=0$, stays the same
8	(a) (b) (c) (d) (e)	2.125 and 2.375 Correct curve Ruled tangent at $x=2$ Gradient from 7.8 to 10.2 0 and -1.75 to -1.65 and 1.65 to 1.75 $-1.2 \text { to }-0.8<k<2.8 \text { to } 3.2$	2 B4 B1 2 2 2	B1 for one correct value B3FT for 11 correct plots or B2FT for 9 or 10 correct plots or B1FT for 7 or 8 correct plots No daylight at $x=2$. Consider point of contact as midpoint between two vertices of daylight, this must be between $x=1.8$ and 2.2 Dep on B1 awarded Allow integer/integer or a mixed number if within range or M1 dep for (change in y) $\div($ change in x) Dependent on any tangent drawn or close attempt at a tangent at any point Must see correct or implied calculation from a drawn tangent B1 for two correct values B1 for each correct or SC1 for reversed answers

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	41

Qu		Answers	Mark	Part Marks
9	(a) (i) (ii) (iii) (b) (i) (ii)	37.5 to 38.5 19.5 to 20.5 nfww 43 31.8[4...] nfww Correct histogram	2 2 4 4	B1 for $[\mathrm{LQ}=] 23.5$ to 24 or [UQ =] 43.5 to 44 B1 for 56 seen or horizontal line drawn at $\mathrm{cf}=56$ M1 for midpoints soi (condone 1 error or omission) and M1 for use of $\sum f t$ with t in correct interval including both boundaries (condone 1 further error or omission) and $\text { M1 }\left(\mathbf{d e p} \text { on } 2^{\text {nd }} \mathbf{M} 1\right) \text { for } \sum f t \div 80$ ($2547.5 \div 80$) B1 for each correct block with correct width and height If B0 then SC1 for four correct f.d.s or four correct widths
10	(a) (i) (ii) (iii) (iv) (v)	5 $-2 \frac{1}{3}$ oe $\frac{x+3}{2}$ or $\frac{x}{2}+1.5$ as final ans $4 x-9$ as final answer nfww $(2 x-3)(x+1)=1+2(x+1)$ $2 x^{2}-3 x+2 x-3$ or better seen $2 x^{2}-3 x-6=0$	1 2 2 2 M1 B1 A1	B1 for $[\mathrm{h}(-1)=] \frac{1}{3}$ soi or M1 for $2\left(3^{x}\right)-3$ M1 for $y+3=2 x$ or $x=2 y-3$ or $\frac{y}{2}=x-1.5$ or better or correct reverse flowchart M1 for $2(2 x-3)-3$ $(2 x-5)(x+1)=1$ (eliminate fractions) $2 x^{2}-5 x+2 x-5$ or better seen No errors or omissions seen

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	41

\begin{tabular}{|c|c|c|c|c|}
\hline Qu \& \& Answers \& Mark \& Part Marks

\hline \& (vi)

(b) \& \begin{tabular}{l}
$$
\frac{-(-3) \pm \sqrt{(-3)^{2}-4 \times 2 \times-6}}{2 \times 2}
$$

2.64 and -1.14 cao

$\frac{x-1}{x+5}$ as final answer nfww

 \&

B2

B1B1

 \&

B1 for $\sqrt{(-3)^{2}-4 \times 2 \times-6}$ or better [$\sqrt{57]}$ and if in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ B1 for $p=-(-3)$ and $r=2 \times 2$ or better SC1 for 2.64 and -1.14 seen in working or 2.6 and -1.1 as final ans or 2.637. and -1.137 .. as final ans or -2.64 and 1.14 as final ans

B3 for $(x-1)(x-2)$ and $(x+5)(x-2)$

or B2 for $(x-1)(x-2)$ or $(x+5)(x-2)$

or SC1 for $(x+a)(x+b)$ where $a+b=3$ or -3 or $a b=2$ or -10
\end{tabular}

\hline 11 \& | (a) (i) |
| :--- |
| (ii) |
| (b) (i) |
| (ii) | \& | $(-5,7)$ |
| :--- |
| (a) $\frac{3}{5} \mathbf{a}+\frac{2}{5} \mathbf{b}$ or $\frac{1}{5}(3 \mathbf{a}+2 \mathbf{b})$ final answer |
| (b) $\frac{2}{5} \mathbf{a}$ |
| $N Y=\frac{2}{5} B C$ oe |
| [$N Y$] parallel to $[B C]$ | \& \& | M1 for $\sqrt{(-3)^{2}+4^{2}}$ or better |
| :--- |
| M1 for any correct vector path for $\overrightarrow{O N}$ |
| M1 for any correct vector path for $\overrightarrow{N Y}$ |
| dep on (b)(i)(b) correct |
| dep on $\overline{N Y}=k \mathbf{a}, k \neq 1$ |

\hline
\end{tabular}

MARK SCHEME for the May/June 2014 series

0580 MATHEMATICS

0580/42
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	42

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Qu		Answers	Mark	Part Marks
(b)	(a)	$240 \div(5+7) \times 7[=140]$ oe	M2	M1 for $240 \div(5+7)$ or 240×7
(c)	144	$\mathbf{2}$	B1 for ratio of form $2 x: 3 x$ seen	
(d)	89.99 can mark final answer	or SC1 for $3: 2$		

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	42

Qu		Answers	Mark	Part Marks
2	(a) (b) (c)	3, 3, - 1	3	B1 B1 B1 B3FT 11 points or B2FT for 9 or 10 points or B1FT for 7 or 8 points And B1indep two separate branches not touching or crossing y-axis
		Complete correct curve	5	
		0.5 to 0.6	1	
	(d)	Correct line and 0.4 to 0.5 or no line and 0.4 to 0.5 nfww	3	Must check line - not if wrong line B2 for $y=2 x+3$ ruled correctly or SC1 for correct freehand line or ruled line with either gradient 2 or y-intercept 3 but not $y=3$
	(e) (i)	Tangent at $x=-1.5$	1	No daylight at $x=-1.5$. Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x=-$ 1.7 and -1.3
	(ii)	- 2 to - 1	2	Dependent on tangent mark awarded Allow integer/integer if in range Or M1 for rise/run also dep on any tangent drawn or close attempt at tangent at any point Must see correct or implied calculation from a drawn tangent

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	42

Qu		Answers	Mark	Part Marks
3	(a)	86.8 or 86.83....	3	M2 for $\frac{80 \sin 55}{\sin 49}$ or M1 for $\frac{80}{\sin 49}=\frac{x}{\sin 55}$
	(b)	51.2 or 51.15 to 51.16	4	M2 for $[\cos =] \frac{95^{2}+90^{2}-80^{2}}{2.95 .90}$ oe or M1 for $80^{2}=95^{2}+90^{2}-2 \cdot 90 \cdot 95 \cdot \cos B C D$ A1 for $\frac{10725}{17100}$ or $\frac{143}{228}$ etc. or $0.627 \ldots .$.
	(c)	6700 or 6698 to 6703	3	M2 for $0.5 \times 80 \times$ their $(\mathrm{a}) \times \sin (180-55-49)$ oe [$3368-3370 \ldots$...] [If $A B$ used then $A B=102.8$ to 103] $+0.5 \times 90 \times 95 \times \sin (\text { their }(\mathrm{b})) \text { oe }$ [3329-3332] or M1 for one of these triangle area methods oe
	(d)	2180 or 2176 to 2179	3FT	FT their (c) $\times 0.325$ correctly evaluated to 3 sf or better M2 for their $(\mathrm{c}) \times \frac{3250}{10000}$
				or SC1 FT for figs 218 or figs 2176 to 2179

Page 5 Mark Scheme	Syllabus	Paper	
	IGCSE - May/June 2014	0580	42

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	42

Qu		Answers	Mark	Part Marks
5	(a) (i) (ii) (b) (c)	2412 to 2413.... 2.41[0] $1 \min 24 \mathrm{~s}$ 14	B2 B1 4	Must be at least 4 figures shown M1 for $\pi \times 8^{2} \times 12$ oe B3 for 83.76 to $83.8[0]$ or 84 or 1.396 to 1.397 or 1.4 or 1 min 23.76 to 1 min 23.8 seen or M2 for $\frac{1}{3} \pi \times 4^{2} \times 10 \div 2[80 / 3 \pi]$ or M1 for $\frac{1}{3} \pi \times 4^{2} \times 10[160 / 3 \pi$ or 167.5 to 167.6] M1 for $\frac{2410}{\frac{1}{3} \pi \times 4^{2} \times 10}$ or $\frac{2410}{\text { their cone ool from part (b) }}$ their cone vol from part (b) A1 for 14.3 to 14.4....
6	(a) (i) (ii) (b) (c)	$[x=] 21,[y=] 42$ 3.79 or $3.8[0]$ or 3.792 to 3.802 40 38	2 2 4 5	B1 B1 M1 for $\frac{3.31}{T Q}=\frac{8.23}{9.43}$ oe or $\frac{\sin 21 \text { or } \sin \text { their } x}{T Q}=\frac{\sin 117}{9.43}$ oe B3 for angle between $H E$ and tangent $=25$ or $G F H=40$ or $E G H=25$ and angle $E H G=115$ (accept 90 and 25 at H for 115) B2 for angle $E G H=25$ or angle $E H G=115$ (accept 90 and 25 at H for 115) B1 for angle $F E G=25$ or angle $E F G=65$ B4 for angle $A D C=104$ or M4 for $x+14+20+x+70=180$ or better or B3 for angle $O B A=20$ and angle $O B C=56$ or angle $C B A=76$ or reflex angle $A O C=208$ or B2 for angle $O A B$ or $O B A=20$ and angle $A C B=70$ or obtuse angle $A O C=152$ or angle $B O C=68$ or B1 for angle $O A B$ or $O B A=20$ or angle $A C B=70$

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	42

Qu		Answers	Mark	Part Marks
7	(a) (i) (ii) (b)	$(100-70) \times 0.4[=12]$ or better 60.9 or $60.89 \ldots$ nfww 60.5	5	Accept $\frac{24}{78} \times 39$ oe B1 for 3 or 4 correct extra frequencies 3,6 , 10, 8 soi M1 for at least 4 of mid-interval values 15 , 40, $55,65,85$ soi M1 for $\Sigma f x$ where x is any value in each interval allow their frequencies provided integers and they must be shown $[3 \times 15+6 \times 40+10 \times 55+8 \times 65+12 \times$ 85] [2375] M1 (dependent on second M1) for $\div 39$ or $\div(3+6+10+8+12)$ M2 for $20 \times 70-19 \times 70.5$ oe or M1 for either 20×70 or 19×70.5
8	(a) (i) (ii) (b) (i)	$\begin{aligned} & \frac{600}{x} \\ & \frac{600}{x+1} \\ & \frac{600}{x}-\frac{600}{x+1}=20 \text { oe } \\ & 600(x+1)-600 x=20 x(x+1) \text { or better } \\ & 600 x+600-600 x=20 x^{2}+20 x \\ & 0=20 x^{2}+20 x-600 \\ & x^{2}+x-30=0 \end{aligned}$	1 M1FT A1 A1	Not $x=\frac{600}{x}$ Not $x=\frac{600}{x+1}$ FT their (a)(i) - their (a)(ii) $=20$ oe If M0, SC1FT for their(a)(ii) - their $(\mathrm{a})(\mathrm{i})=20$ oe May still be over common denominator and can be implied by third line. Allow recovery if bracket omitted Dep on M1A1 and conclusion reached with at least one of the interim lines and without any errors or omissions

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	42

Qu		Answers	Mark	Part Marks
	(ii)	$x=5$	B3	B2 for $(x+6)(x-5)[=0]$ oe or SC1 for $(x+a)(x+b)$ where $a b=-30$ or $a+b=1$ or B2 for $\frac{-1+o r-\sqrt{1^{2}-4.1 .-30}}{2.1}$ or $\sqrt{30+\left(\frac{1}{2}\right)^{2}}-\frac{1}{2}$ or B1 for $\frac{-1+o r-\sqrt{q}}{2.1}$ or $\sqrt{1^{2}-4.1-30}$ or $\left(x+\frac{1}{2}\right)^{2}$ FT $600 \div($ their $x+1)$ if $x>0$ correctly evaluated
9	(a) (b) (c) (d) (e)	$\frac{1}{4}, \frac{9}{10}, \frac{1}{3}, \frac{2}{3}$ 45 $\frac{3}{40}$ oe $\frac{101}{120}$ oe $\frac{781}{1024}$ oe	3 1 2 3 2	B1 for $\frac{1}{4}$ B1 for $\frac{9}{10}$ B1 for $\frac{1}{3}$ and $\frac{2}{3}$ M1 for $\frac{3}{4} \times \frac{1}{10}$ oe M2 for $\frac{3}{4} \times \frac{9}{10}+\frac{1}{4} \times \frac{2}{3}$ only or 1-their (c) $-\frac{1}{4} \times \frac{1}{3}$ only or M1 for $\frac{3}{4} \times \frac{9}{10}$ or $\frac{1}{4} \times \frac{2}{3}$ or their (c) $+\frac{1}{4} \times \frac{1}{3}$ M1 for $1-\left(\frac{3}{4}\right)^{5}$ oe

Page 9	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	42

Qu		Answers	Mark	Part Marks
10	(a)	2	2	$\text { B1 for } \mathrm{g}\left(\frac{1}{2}\right)=\frac{1}{2} \text { soi or }[\mathrm{fg}=] \frac{1}{1-x}$
	(b)	$1-x$	1	Accept equivalents e.g. $-(x-1)$
	(c)	$x^{2}-2 x+2$	3	M1 for $(1-x)^{2}+1$ B1 for $\left.\mid(1-x)^{2}=\right\rfloor 1-x-x+x^{2}$ or better
	(d)	-6	1	
	(e)	$\sqrt{(-3)^{2}-4(1)(1)}$ or better	B1	or for $\left(x-\frac{3}{2}\right)^{2}$
		$p=-(-3)$ and $r=2 \times 1$ oe	B1	Must see $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ or both or for $\frac{3}{2}+o r-\sqrt{\left(\frac{3}{2}\right)^{2}-1}$
		0.38, 2.62	B1B1	SC1 for answers 0.4 and 2.6 or 0.3819 to 0.3820 and $2.618 \ldots$ or 0.38 and 2.62 seen in working or for -0.38 and -2.62 as final ans
	(f)	$\mathrm{f}(x)$ and $\mathrm{g}(x)$	1	Accept f and gor $1 / x$ and $1-x$

Page 10	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	42

MARK SCHEME for the May/June 2014 series

0580 MATHEMATICS

0580/43
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	43

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

Qu		Answers	Mark	Part Marks
1	(a) (b) (c) (d) (e)	62100[.00] Final answer 39300 20436 4 25545	3 2 3	B1 for 62074 [. 35] or 62070 M2 for 45 981: 1.17 oe or M1 for 45981 associated with 117 [\%] M1 for $45981 \div(3+4+2)$ or 45981×4 M2 for $\frac{1.5 \times 1000}{330}$ oe or M1 for figs 4545 ... or 455 M1 for $45981 \times \frac{5}{9}$
2	(a)	$\begin{aligned} & 10<x \leq 25 \quad 25<x \leq 30 \\ & 30<x \leq 35 \quad 35<x \leq 50 \\ & 50<x \leq 60 \\ & \\ & 133319 \text { [4] } 156 \\ & 25.1[0] \text { or } 25.13 \text { to } 25.14 \mathrm{nfww} \end{aligned}$	3 4	5 correct B1 for 3 or 4 correct or SC1 for all correct but in the form 10 to 25 or $10-25$ B2 for 4 correct or B1 for 3 correct M1 for mid-values soi, condone one error or omission 517.527 .532 .542 .555 soi and M1 for $\Sigma f x$ for any x in intervals including boundaries, but all f s must be integers, condone one further error or omission and M1 dep for $\Sigma f x \div 90$ Dep on 2nd \mathbf{M} mark earned

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	43

Qu		Answers	Mark	Part Marks
3	(a) (i) (ii) (b) (c)	$72[.0]$ or 71.98 to 71.99 nfww 16.2 or 16.18 to 16.19 nfww 7.61 or $7.612 \ldots$ nfww 50 130	1	M2 for $[\sin \mathrm{P}=] \frac{97}{\frac{1}{2} \times 12 \times 17}$ oe or M1 for implicit version M2 for $6^{2}+17^{2}-2 \times 6 \times 17 \times \cos$ (their 72) or M1 for implicit form and A1 for $\left[X R^{2}=\right] 261.8$ to 262 M3 for $[a=] 9.4 \times \sin 37 \div \cos 42$ oe or $[a=] 9.4 \sin 37 / \sin (90-42)$ or M2 for $[a=$] their height $\div \cos 42$ oe or $\frac{a}{\sin 37}=\frac{9.4}{\sin (90-42)}$ oe or M1 for their height $\div a=\cos 42$ or for [their height $=$] $9.4 \times \sin 37$ oe or B1 for 48° correctly used or seen in correct position on diagram
4	(a) (b) (c) (d)	$0,4.5,3.11[1 \ldots]$ Complete correct curve with minimum below $y=2$ $\begin{array}{\|l} -0.5 \text { to }-0.6 \\ 0.6 \text { to } 0.7 \\ 2.8 \text { to } 2.9 \end{array}$ Correct line or no line and -0.7 to -0.6 nfww	3 5 1 1 3	B1, B1, B1 B3 FT for 9 points correctly plotted B2 FT for 7 or 8 points correctly plotted or B1 FT 5 or 6 points correctly plotted and B1 indep two separate branches not touching or cutting y-axis if $0 \mathbf{S C 1}$ for $y=3$ indicated Must check line - not if wrong line B2 for $y=1-x$ ruled correctly or SC1 for ruled line with either gradient -1 or y-intercept 1 but not line $\mathrm{y}=1$ or correct freehand line

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	43

\begin{tabular}{|c|c|c|c|c|}
\hline Qu \& \& Answers \& Mark \& Part Marks

\hline \& (e)

(f) \& \begin{tabular}{l}
tangent ruled at $x=2$

and
$$
0.62 \text { to } 0.8
$$
$$
\begin{aligned}
& \frac{1}{x^{2}}=-x \text { or } 1+x^{3}=0 \\
& 1=-x^{3} \text { or } x^{3}=-1 \\
& x=\sqrt[3]{-1}
\end{aligned}
$$

 \&

3

M1

M1

A1

 \&

Accept integer/integer provided in range B1 for correct tangent drawn

and M1 for change in $y /$ change in x dep on any tangent or close attempt at tangent at any point

Must see correct or implied calculation from a drawn tangent

dep M1

dep $\mathbf{M 2}$
\end{tabular}

\hline 5 \& | (a) (i) |
| :--- |
| (ii) |
| (b) (i) |
| (ii) | \& \[

$$
\begin{aligned}
& \binom{2}{4} \\
& 5.83 \text { to } 5.831 \\
& -2 \mathbf{p}+\mathbf{q} \text { oe } \\
& \overrightarrow{P S}=-\mathbf{p}+2 \mathbf{q} \text { or } \overrightarrow{S P}=\mathbf{p}-2 \mathbf{q} \\
& \overline{M S}=-\frac{2}{3} \mathbf{p}+\frac{4}{3} \mathbf{q} \text { seen } \\
& \text { or } \overrightarrow{S M}=\frac{2}{3} \mathbf{p}-\frac{4}{3} \mathbf{q} \text { seen } \\
& \text { or } \overrightarrow{R M}=\frac{2}{3}(-2 \mathbf{p}+\mathbf{q}) \text { soi } \\
& \text { or } \overrightarrow{M R}=\frac{2}{3}(2 \mathbf{p}-\mathbf{q}) \text { soi } \\
& \text { or } \overrightarrow{M Q}=\frac{1}{3}(-2 \mathbf{p}+\mathbf{q}) \text { soi } \\
& \text { or } \overrightarrow{Q M}=\frac{1}{3}(2 \mathbf{p}-\mathbf{q}) \text { soi } \\
& \overrightarrow{P M}=\mathbf{p}+\overrightarrow{R M} \\
& \text { or } \mathbf{p}-\overrightarrow{M R} \\
& \text { or }-\mathbf{p}+\mathbf{q}+\overrightarrow{Q M} \\
& \text { or }-\mathbf{p}+\mathbf{q}-\overrightarrow{M Q} \\
& {\left[=-\frac{1}{3} \mathbf{p}+\frac{2}{3} \mathbf{q}\right]}
\end{aligned}
$$

\] \& | 1 |
| :--- |
| 2 |
| 1 |
| B1 |
| B1 |
| M1 | \& | M1 for $3^{2}+5^{2}$ seen accept unsimplified |
| :--- |
| Any correct route for $\overrightarrow{P M}$ eg $\overrightarrow{P R}+\overrightarrow{R M}$ |

\hline
\end{tabular}

Page 5 Mark Scheme	Syllabus	Paper	
	IGCSE - May/June 2014	0580	43

Qu		Answers	Mark	Part Marks
6	(a) (i) (ii) (iii) (b) (c)	$\frac{1}{6}$ $\frac{4}{6}$ oe $\frac{2}{6}$ oe $\frac{16}{36}$ oe $\frac{48}{360} \text { oe }$	1 1 3 3	M2 $\frac{2}{6} \times \frac{4}{6}+\frac{4}{6} \times \frac{2}{6}$ only oe or M1 for one of $\frac{2}{6} \times \frac{4}{6}$ or $\frac{4}{6} \times \frac{2}{6}$ soi by $\frac{2}{9}$ M2 for $\frac{4}{6} \times \frac{3}{5} \times \frac{2}{4} \times \frac{2}{3}$ only oe or M1 for denominators 6, 5, 4, 3 soi in product of four fractions
7	(a) (i) (ii) (iii) (iv) (b) (i) (ii)	148 122 148 106 nfww 63 54	2 1 3 2 2	B1 for 58 seen at A or 32 seen at Y B1 for [sum of interior angles =] 720 and M1 for $\frac{1}{2}\{($ their 720$)-(p+q+t+90)\}$ B1 for angle $R P S=27$ or 90 at P or at S seen or stated B1 for their x or 63 or letter x at Q seen or state

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2014	0580	43

Qu		Answers	Mark	Part Marks
8	(a) (i) (ii) (b)	$\begin{aligned} & 7 \times 2+(2 x-3)(x+4)=2(x+4) \\ & 2 x^{2}+8 x-3 x-12 \text { or better seen } \\ & 2 x^{2}+3 x-6=0 \\ & \sqrt{(3)^{2}-4(2(-6))} \text { or better } \\ & p=-3 \text { and } r=2(2) \end{aligned}$ 1.14 and -2.64 cao $\begin{aligned} & \pi \times x^{2}+\pi \times x \times 3 x \\ & 4[\pi] x^{2}=[\pi] r^{2} \\ & 2 x=r \end{aligned}$	M1 B1 A1 B1 B1 B1B1 M2 M1 A1	Allow if bracket[s] omitted but recovers with no errors seen and brackets correctly expanded on both sides and no omission of brackets or $\left(x+\frac{3}{4}\right)^{2}$ Must see $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ or both Or $-\frac{3}{4}+$ or $-\sqrt{\frac{57}{16}}$ SC1 for 1.1 and - 2.6 final answer or 1.137 and -2.637 final answer or 1.14 and -2.64 seen in working or for -1.14 and 2.64 as final ans or M1 for $\pi \times x \times 3 x$ Dep on M2 with no errors seen
9	(a) (b) (c) (d) (e)	$4-6 x$ final answer $9 x-8$ final answer $\frac{1}{27}$ final answer $\frac{4-x}{3}$ oe final answer $\frac{4}{3}$ or $1 \frac{1}{3}$ or 1.33 or better	1 2 3 2 3	M1 for $4-3(4-3 x)$ seen M2 for 3^{-3} soi by final answer $0.037037 \ldots$ to 3 sf or better or M1 for $[g(-1)=] 3$ soi M1 for a correct first step $3 x=4-y$ oe or $x=4-3 y$ or $\frac{y}{3}=\frac{4}{3}-x$ M2 for $3 x-4=0$ or better or M1 for $3^{-(4-3 x)}$

Page 7 Mark Scheme	Syllabus	Paper	
	IGCSE - May/June 2014	0580	43

MARK SCHEME for the October/November 2013 series

0580 MATHEMATICS

0580/41
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	41

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
www	without wrong working
art	anything rounding to
soi	seen or implied

Qu	Answers	Mark	Part Marks
1	(a) (i) $\frac{2}{5}$ cao (ii) $3: 2$ cao (b) (i) 1.22 (ii) 1.3 [0] nfww (c) $33.6[0]$	1 1 2 3 2	M1 for $86.38-28 \times 1.56$ M2 for $1.56 \div 1.2$ oe or M1 for $1.56=120 \%$ soi M1 for $(667-314.2) \div 10.5$ oe
2	(a) 3 correct lines on grid $(0,0)$ to $(40,5)$ $(40,5)$ to $(100,5)$ $(100,5)$ to $(120,0)$ (b) $\frac{5}{40}$ oe (c) 3.75	2 1 4	Allow good freehand SC1FT for 2 lines correct, FT from an incorrect line M2 for $0.5 \times 40 \times 5+60 \times 5+0.5 \times 20 \times 5$ oe [450] or M1 for evidence of a relevant area $=$ distance and M1dep their area (or distance) $\div 120$

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	41

Qu	Answers	Mark	Part Marks
3	(a) (i) 204 or 204.2 to 204.23 (ii) 12 cao (iii) 314 or 314.1 to 314.2 (iv) 3.14×10^{-4} or 3.141 to 3.142×10^{-4} (b) 138 or 138.3 to 138.5	2 3 2 2FT	M1 for $\pi \times 5 \times 13$ implied by answer in range 204.1 to 204.3 M2 for $\sqrt{13^{2}-5^{2}}$ or states 5, 12, 13 triangle or M1 for $13^{2}=5^{2}+h^{2}$ or better M1 for $\frac{1}{3} \times \pi \times 5^{2} \times$ their (a) (ii) implied by answer in range 314 to 314.3 FT their (a) (iii) $\div 100^{3}$ correctly evaluated and given in standard form to 3 sig figs or better or M1 FT for their (a) (iii) $\div 100^{3}$ or SC1 for conversion of their m^{3} into standard form only if negative power M3 for $\frac{10 \pi}{26 \pi} \times 360$ oe or $\frac{\pi \times 5 \times 13 \text { ortheir } \mathbf{(a) (\mathbf { i })}}{\pi \times 13^{2}} \times 360 \text { oe }$ or M2 for a correct fraction without $\times 360$ or M1 for $\pi \times 2 \times 13$ oe [81.6 to 81.8] seen or $\pi \times 13^{2}$ oe [530.6 to 531.2] seen
4	(a) 45.[0] or 45.01 to 45.02 nfww (b) 84.9 or 84.90 to 84.92 (c) (i) 4060 or 4063 to 4064 nfww (ii) 1020 or 1015 to 1016 (d) 35.4 or $35.35 \ldots \mathrm{nfww}$	4 4 3 2FT 2	M2 for $55^{2}+70^{2}-2.55 .70 \cos 40$ or M1 for correct implicit equation A1 for 2026. B1 for angle $\mathrm{BDC}=40$ soi M2 for $\frac{70 \sin (\text { their 40) }}{\sin 32}$ or M1 for correct implicit equation M2 for $\frac{1}{2}(55 \times 70 \sin 40)+\frac{1}{2}$ $(70 \times$ their $(b) \sin (180-$ their $40-32))$ oe or M1 for correct method for one of the triangle areas FT their (c) (i) $\div 4$ oe correctly evaluated or M1 their (c) (i) \div figs 4 oe M1 for $\sin 40=\frac{\text { distance }}{55}$ or better or for $\frac{1}{2}(55 \times 70 \sin 40)=(70 \times$ distance $) \div 2$ or better

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	41

Qu	Answers	Mark	Part Marks
5	(a) (i) Correct reflection to $(4,8)$ $(2,9)(4,9)$ (ii) Correct rotation to $(4,2),(4,3)$ $(6,3)$ (iii) Shear, x-axis oe invariant, [factor] 2 (iv) $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ (b) (i) $\mathbf{p}+2 \mathbf{s}$ final answer (ii) $\mathbf{s}+\frac{1}{2} \mathbf{p}$ final answer (c) parallel and $O Q=2 S R$ oe	2 3 2FT 2 2	SC1 for reflection in line $x=5$ or reflection in $y=k$ Ignore additional triangles SC1 for rotation 180° with incorrect centre Ignore additional triangles B1 each (independent) FT their shear factor B1FT for one correct column or row in 2 by 2 matrix but not identity matrix or SC1FT for $\left(\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right)$ M1 for recognising $\overrightarrow{O Q}$ as position vector soi B1 for $\mathbf{s}+k \mathbf{p}$ or $k \mathbf{s}+\frac{1}{2} \mathbf{p}$ or correct route $(k \neq 0)$
6	(a) (i) 1.4 to 1.6 (ii) 1.15 to 1.25 (iii) - 1 (iv) $\begin{aligned} & -2.25 \text { to }-2.1 \\ & -0.9 \text { to }-0.75 \\ & 2.2 \text { to } 2.35 \end{aligned}$ (b) (i) -15 (ii) $\frac{1-x}{2}$ or $\frac{1}{2}-\frac{x}{2}$ oe final answer (iii) $-2,2$ (iv) $\frac{1}{8}$ oe nfww	1	B2 for 2 correct or B1 for one correct or B1 for $y=x$ drawn ruled to cut curve 3 times B1 for $[\mathrm{h}(3)=] 8$ seen or M1 for $1-2\left(x^{2}-1\right)$ or better M1 for $2 x=1-y$ or $x=1-2 y$ or better M1 for $x^{2}-1=3$ or better B1 for one answer M2 for $8 x=1$ or $8 x-1=0$ or M1 for $1-2(3 x)[=2 x]$

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	41

| Qu | Answers | Mark | Part Marks |
| :---: | :---: | :---: | :---: | :--- |

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	41

Qu	Answers	Mark	Part Marks
8	(a) $\sqrt{(-11)^{2}-4(8)(-11)}$ or better $p=-(-11), r=2(8)$ or better $-0.67,2.05$ final answers (b) 132 (c) 20 with supporting algebraic working	B1 B1 B1B1 3	Seen anywhere or for $\left(x-\frac{11}{16}\right)^{2}$ Must be in the form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ or $\mathbf{B} 1$ for $\sqrt{\frac{11}{8}+\left(\frac{11}{16}\right)^{2}}+\frac{11}{16}$ SC1 for -0.7 or -0.672 to -0.671 and 2.0 or 2.046 to 2.047 or answers 0.67 and -2.05 M1 for $y=k \sqrt{x}$ oe or $\sqrt{x=k y}$ oe A1 for $\mathrm{k}=6$ oe or better or for $\mathrm{k}=0.1666$ to 0.167 [$\mathrm{k}=6$ implies M1A1] oe B2 for $\frac{x}{2.5}+\frac{x-14.5}{0.5}=19$ oe or B1 for $\frac{x}{2.5}$ or $\frac{x-14.5}{.5}$ M1dep on B2 for first completed correct move to clear both fractions M1 for second completed correct move to collect terms in x to a single term M1 for third completed correct move to collect numeric term[s] leading to $a x=b$ SC1 for 20 with no algebraic working
9	(a) $\begin{aligned} & y=2 \mathrm{oe} \\ & y=2 x \mathrm{oe} \\ & y=-\frac{1}{2} x+5 \mathrm{oe} \end{aligned}$ (b) $\begin{aligned} & y \geq 2 \mathrm{oe} \\ & y \leq 2 x \mathrm{oe} \\ & y \leq-\frac{1}{2} x+5 \mathrm{oe} \end{aligned}$ (c) (i) 4 [bushes], 3 [trees] (ii) 2 [bushes], 4 [trees]		M1 for $y=k x, k \neq 0$ or gradient 2 soi M1 for gradient $-1 / 2$ soi or $y=k x+5$ oe or $x+2 y=k \quad k \neq 0$ oe If L^{2} and L^{3} both correct but interchanged then SC3 B1 for each correct inequality, allow in any order After 0 scored, SC1 for all inequalities reversed M1 for any correct trial using integer coordinates in region or $30 x+200 y=720$ seen M1 for any correct trial using integer coordinates in region

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	41

Qu	Answers	Mark	Part Marks
10	(a) (i) $1+2+3+4+5=15$	1	
	(ii) Correct substitution equating to sum e.g. $\frac{2(2+1)}{k}=3$ and $k=2$ stated with no errors seen	2	M1 for using a value of n in $\frac{n(n+1)}{k}$ e.g. $\frac{2(2+1)}{k}=3$ or for a verification using $k=2$ e.g. $\frac{2(2+1)}{2}=3$
	(iii) 1830	1	
	(iv) 30	2	M1 for $\frac{n(n+1)}{2}=465$ or better
	(v) $n-8$	1	
	(b) (i) 225,15	2	B1 either
	(ii) $\frac{n^{2}(n+1)^{2}}{4}$ oe	1	
	(iii) 36100	2	M1 for $\frac{19^{2}(19+1)^{2}}{4}$ oe or 190^{2}

MARK SCHEME for the October/November 2013 series

0580 MATHEMATICS

0580/42
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	42

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
www	without wrong working
art	anything rounding to
soi	seen or implied

	Correct answer	Mark	Part marks
1	(a) (i) 3216 Final answer (ii) 1307 Final answer (b) $4.5[\%] \mathrm{nfww}$ (c) A by $31.05 \ldots$ or 31.04 to 31.05 or 31.[0] 31.1[0]	2FT	M1 for $(18900-5500) \times 0.24$ oe FT (18900 - their (a)(i)) $\div 12$ correctly evaluated M1 for (18900 - their (a)(i)) $\div 12$ M1 for $\frac{19750.50[-18900]}{18900} \times 100$ or $\frac{19750.50-18900}{18900}$ M1 for $1500 \times 4.1 / 100 \times 3$ [+1500$]$ oe M1 for $1500 \times 1.033^{3}[-1500]$ oe A1 for 1684.5 or 184.5 or 1653 [.45..] or 153[.45..] and M1dep for subtraction of their amounts or their interests
2	(a) 36.9° or 36.86 to 36.87 (b) (i) $1.8^{2}+2.4^{2}$ leading to $\sqrt{9}$ (ii) $[\cos A B D)=] \frac{6.46^{2}+3^{2}-8.6^{2}}{2 \times 6.46 \times 3}$ 127 or 126.8... (c) 39.6 or 39.7 or 39.59 to 39.68	2 2 M2 A2 3	M1 for $\tan [D B C]=1.8 / 2.4$ oe M1 for $1.8^{2}+2.4^{2}$ or better M1 for correct cos rule but implicit version A1 for - 0.599... After $\mathbf{0}$ scored, SC2 nfww for answer 127 or 126.8 to 126.96 from other methods or no working shown M2 for $1 / 2(2.4+8.6) \times 1.8 \times 4$ oe Or M1 for $\frac{1.8}{2}(2.4+8.6)$ oe soi by 9.9 to 9.92

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	42

\begin{tabular}{|c|c|c|c|}
\hline 3 \& \begin{tabular}{l}
(a) \(\frac{4 x-7}{10}\) final answer nfww \\
(b) \(x^{2}+9\) final answer nfww \\
(c) (i) \((2 x-1)(x+3)\) isw solving \\
(ii) \(\frac{2 x-1}{2(x-3)}\) or \(\frac{2 x-1}{2 x-6}\) final answer nfww
\end{tabular} \& 3

4

2

3 \& | M2 for $\frac{5(2 x-1)-2(3 x+1)}{2 \times 5}$ or $\frac{5(2 x-1)}{5 \times 2}-\frac{2(3 x+1)}{5 \times 2}$ |
| :--- |
| or M1 for attempt to convert to common denominator of 10 or multiple of 10 with one error in numerator |
| B3 for $4 x^{2}-6 x-6 x+9-3 x^{2}+12 x$ or correct answer given and then spoilt or B1 for $4 x^{2}-6 x-6 x+9$ seen and B1 for $-3 x^{2}+12 x$ or $-\left(3 x^{2}-12 x\right)$ seen |
| M1 for $(2 x+a)(x+b)$ where $a b=-3$ or $2 b+a=5$ with integers a and b |
| M2 for $2(x+3)(x-3)$ or $(2 x-6)(x+3)$ or $(2 x+6)(x-3)$ seen or M1 for $2\left(x^{2}-9\right)$ seen |

\hline 4 \& | (a) (i) $90 \div\left(42 / 360 \times \pi \times 8^{2}\right)$ o.e. 3.836 to 3.837 |
| :--- |
| (ii) 131 or 130.75 to 130.9 nfww |
| (b) 2.42 or 2.416 to 2.419 | \& $\begin{array}{r}\text { M3 } \\ \text { A1 } \\ 5 \\ 5 \\ \\ \\ \\ \hline\end{array}$ \& | M2 for $42 / 360 \times \pi \times 8^{2} \times h=90$ |
| :--- |
| or M1 for $42 / 360 \times \pi \times 8^{2}$ |
| M2 for $42 / 360 \times \pi \times 2 \times 8 \times 3.84$ oe |
| [22.48 to 22.53] |
| or M1 for $42 / 360 \times \pi \times 2 \times 8$ oe soi [5.86 to 5.87] |
| and M1 for $2 \times(8 \times 3.84)$ |
| [61.37 to 61.44] |
| and M1 for $2 \times\left(42 / 360 \times \pi \times 8^{2}\right)$ |
| [46.88 to 47] |
| M2 for $3.84 \times \sqrt[3]{\frac{22.5}{90}}$ oe or $h=\sqrt[3]{\frac{3.84^{3} \times 22.5}{90}}$ or M1 for $\sqrt[3]{\frac{22.5}{90}}$ oe or $\sqrt[3]{\frac{90}{22.5}}$ oe seen or $\frac{3.84^{3}}{h^{3}}=\frac{90}{22.5}$ oe |

\hline
\end{tabular}

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	42

5	(a) $7,11.5,4.5$ (b) Correct curve cao (c) (i) $0.69<x<0.81$ (ii) $-2.3<x<-2.2$ $-0.8<x<-0.6$ $0.35<x<0.5$	$1,1,1$ 5 1 3	B3FT for 10 correct plots, on correct vertical grid line and within correct 2 mm square vertically Or B2FT for 8 or 9 correct plots Or B1FT for 6 or 7 correct plots and B1 indep for two separate branches on either side of y-axis B1 for each correct After 0 scored, allow SC1 for drawing line $y=7.5$ long enough to cross curve at least once
	(d) (i) $y=10-3 x$ ruled correctly	B2	long enough to cross curve twice. B1 for ruled line gradient -3 or y intercept at 10 but not $y=10$ Or B1 for 'correct' but freehand
	$\begin{aligned} -0.55 & <x<-0.45 \\ 0.35 & <x<0.45 \end{aligned}$	B1dep B1dep	Dependent on at least B1 scored for line After 0 scored, SC2 for -0.5 and 0.4 [from solving equation]
	(ii) $\begin{array}{ccc}10 & 1 & -2 \\ \text { or }-10 & -1 & 2\end{array}$	3	B2 for $2-x-10 x^{2}[=0]$ oe Or B1 for $\frac{2}{x^{2}}-\frac{1}{x}-10=0$ oe Correctly eliminating $-3 x$ Or B1 for $2-x-3 x^{3}=10 x^{2}-3 x^{3}$ oe Correctly clearing fractions

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	42

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	42

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	42

9	(a) (i) Reflection $x=-2$ oe (ii) Translation $\binom{-7}{2}$ oe (iii) Stretch x-axis oe invariant [factor] 3 (b) (i) Triangle with coords at $(8,2)$ $(7,3)$ and $(7,5)$ (ii) Triangle with coords at $(-2,-5)(-6,-5)$ and $(-8,-7)$ (iii) Triangle with coords at $(1,-1)$ $(4,-6)$ and $(3,-5)$ (c) $\left(\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right)$	2 3 2 2 2 2	B1 for either B1 for either B1 for each B1 for rotation about $(6,0)$ but 90° anticlockwise Or for rotation 90° clockwise around any point B1 for 2 correct points or for enlargement of SF - 2 any centre B1 for 2 correct points or coordinates of 2 points shown B1 for one row or one column correct but not identity matrix. Or SC1 for $\left(\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right)$
10	(a) 48 and 57, $9 n+3$ oe (b) 56 and $50, \quad 86-6 n$ oe (c) 125 and 216, n^{3} oe (d) 130 and $222 \quad n^{3}+n$ oe		B1 for $9 n+k$ oe B1 for $k-6 n$ oe FT their (c) $+n$ dep on expression in n in (c)

MARK SCHEME for the October/November 2013 series

0580 MATHEMATICS

0580/43
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	43

Abbreviations

$\begin{array}{ll}\text { cao } & \text { correct answer only } \\ \text { cso } & \text { correct solution only }\end{array}$
dep dependent
ft follow through after error
isw ignore subsequent working
oe or equivalent
SC Special Case
www without wrong working
art anything rounding to
soi seen or implied

Qu.	Answers	Mark	Part Marks
(a) (i) (ii) (iii) (b)	45 20 23.4 or 23.38 to 23.41 128	2 2 3 4	M1 for $5 \times 63 \div 7$ M1 for $5 \times 56 \div 14$ M2 for $\frac{13 \times 4.9-48.8}{13 \times 4.9} \times 100$ $\text { or } \frac{4.9-48.8 \div 13}{4.9} \times 100$ Or M1 for $\frac{13 \times 4.9-48.8}{13 \times 4.9}$ or $\frac{48.8}{13 \times 4.9} \times 100$ or $76.6[\ldots]$ Using fractions (percentages / decimals): M1 for $\frac{3}{4} \times \frac{3}{8}\left[=\frac{9}{32}\right]$ or $\frac{75}{100} \times 37.5 \quad[=28.125 \%]$ A1 for $\frac{9}{32}$ or $28.125[\%$] M1 for $36 \div \frac{9}{32}$ oe or $36 \times \frac{100}{28.125}$ oe Partial percentages M1 for (Remaining) $\frac{100 \times 36}{37.5}[=96]$ A1 for 96 M1 for $96 \div \frac{75}{100}$ oe SC1 for 288

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	43

2 (a) (b) (c) (d)	119.94[...] nfww 109 or 108.7 to 108.8 nfww 1970 or 1969 to 1970.4 22300 or 22310 to 22320	4 2 3	M2 for $\frac{62 \times \sin 122}{\sin 26}$ or M1 for $\frac{A C}{\sin 122}=\frac{62}{\sin 26}$ oe SC2 for correct answer from alternative methods M2 for $119.9 . .^{2}+55^{2}-2 \times 119.9 . . \times 55 \cos 65$ A1 for $11827[\cdots]$ or 11834 to $11835[\cdots]$ or M1 for implicit version M1 for $1 / 2 \times 119.9 . . \times 62 \times \sin 32$ M2 for $($ their $(c)+0.5 \times 55 \times 119.9 . . \times \sin 65) \times 4.5$ or M1 for their $(\mathrm{c})+0.5 \times 55 \times 119.9 . . \times \sin 65$
3 (a) (b) (c) (d) (e) (f) (i) (ii)	$\begin{aligned} & 9-2 x, 7-2 x \text { oe } \\ & x(9-2 x)(7-2 x) \\ & 4 x^{3}-32 x^{2}+63 x \end{aligned}$ $24 \quad 20$ Correct curve 0.65 to $0.75 \leq x \leq 2$ oe 36 to 37 1.2 to 1.4	2 M1FT A1 2 3 2 1	B1 for each, accept in any order Correct expansion and simplification with no errors B1 for each correct value B2FT for 5 correct plots or B1FT for 3 or 4 correct plots B1 for 0.65 to 0.75 seen
4 (a) (b) (c) (d) (i) (ii) (iii) (iv)	48 and 84 66 and 66 540 1620 $\begin{aligned} & 2 x+5+3 y-20+4 x-5+x+y- \\ & 10=360 \text { oe } \\ & 2 x+5+3 y-20=180 \\ & {[x=] 30,[y=] 45 \mathrm{nfww}} \end{aligned}$ $65,115,115,65$	1	B1 for each pair M1 for 3×180 or $(2 \times 5-4) \times 90$ or $5 \times(180-360 \div 5)$ oe M1 for 7×360 - their $540-360$ Allow partial simplification but not $7 x+4 y-30=360$ M1 for correct multiplication M1 for correct elimination A1 $x=30$ or $y=45$ If 0 scored $\mathbf{S C 1}$ for correct substitution to find the other variable Accept in any order

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	43

5 (a) (i) (ii) (b) (i) (ii) (iii)	3.81 or 3.812 to 3.813 or 3h 49min nfww Correct histogram $\frac{2}{5}, \frac{1}{4}, \frac{3}{4}, \frac{1}{4}$ oe $\frac{18}{20}$ nfww $\left[\frac{9}{10}\right]$ $\frac{27}{125}[0.216]$	4 2 3 2	M1 for midpoints soi (condone 1 error or omission and M1 for use of $\sum f x$ with x in correct interval including both boundaries (condone 1 further error or omission) and $\text { M1 (dep on } \left.2^{\text {nd }} \mathrm{M} 1\right) \text { for } \sum f x \div 80 \quad(305 \div 80)$ B1 for each correct block and B1 for correct widths B1 for $\frac{2}{5}$ or both $\frac{1}{4} \mathrm{~s}$ in correct place M2 FT for $1-$ their $\frac{2}{5} \times$ their $\frac{1}{4}$ or $\frac{3}{5} \times \frac{3}{4}+\frac{3}{5} \times$ their $\frac{1}{4}+$ their $\frac{2}{5} \times \frac{3}{4}$ oe or M1 FT for their $\frac{2}{5} \times$ their $\frac{1}{4}$ or $\frac{3}{5} \times$ their $\frac{1}{4}+$ their $\frac{2}{5} \times \frac{3}{4}$ oe M1 for $\frac{3}{5} \times \frac{3}{5} \times \frac{3}{5}$
(a) (b) (c)	329.7 to 330 2970 or 2967 to 2969 .[...] 11.5 or 11.6 or 11.53 to 11.55	4 $3 F T$	M2 for $1 / 2 \pi\left(12^{2}+8.75^{2}-3.25^{2}\right)$ oe or M1 for $1 / 2 \pi 12^{2}$ or $1 / 2 \pi 8.75^{2}$ or $1 / 2 \pi 3.25^{2}$ SC2 for answer 1318 to 1320 M3 for $1 / 2 \pi(24+17.5+6.5) \times 35+$ their (a) or M2 for $1 / 2 \pi(24+17.5+6.5) \times 35$ or M1 for $1 / 2 \pi \times 24$ or $1 / 2 \pi \times 17.5$ or $1 / 2 \pi \times 6.5$ SC3 for 3955 to 3960 dep on SC2 in (a) M1 for their (a) $\times 35$ A1 for 11500 or 11530 to 11550

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	43

(d) (i) (ii)	$\frac{r}{h}=\frac{20}{40} \quad \text { or } \quad \frac{r}{20}=\frac{h}{40}$ $35.3 \text { or } 35.31 \text { to } 35.34$	1 3	Accept 20: 40 $=r: h$ leading to $40 r=20 h \quad[r=h / 2]$ $\frac{20}{40}=\frac{1}{2}$ and $\frac{r}{h}=\frac{1}{2}$ M2 for $\sqrt[3]{\frac{\text { their } 11545 \times 12}{\pi}}$ oe or $2 \times$ their r or M1 for their $11545=\frac{1}{3} \times \pi \times\left(\frac{h}{2}\right)^{2} \times h$ oe or their $11545=\frac{1}{3} \times \pi \times r^{2} \times 2 r$ oe
7 (a) (i) (ii) (iii) (iv)	$\frac{3}{2}$ or 1.5 $y=\frac{3}{2} x+2$ oе $\binom{12}{18}$ 21.6 or $21.63[\ldots]$	2 2 1 1 2	M1 for $\frac{14-(-4)}{8-(-4)}$ oe B1 for $y=$ their $\frac{3}{2} x+c \quad$ o.e. or $y=m x+2, m \neq 0$ SC1 for $\frac{3}{2} x+2$ M1 FT for their $12^{2}+$ their 18^{2} oe
(b) (i) (ii) (iii)	(a) $3 \mathbf{b}-4 \mathbf{a}$ (b) $\frac{1}{5}(6 \mathbf{b}-8 \mathbf{a})$ oe simplified (c) $6 \mathbf{a}+3 \mathbf{b}$ oe simplified $O R$ is parallel to $O T$ $\frac{9}{4} \text { or } 2.25$	1	M1 for $\frac{1}{5}(12 \mathbf{a}+6 \mathbf{b})-4 \mathbf{a}$ or $A R=A O+O R$ Dep on $\overrightarrow{O T}$ correct M1 for $\left(\frac{3}{2}\right)^{2}$

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	43

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
8 (a) \\
(b) \\
(c) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\(\frac{2(s-u t)}{t^{2}}\) oe nfww \\
36.75 cao \\
\(\frac{16}{5}\) or better [3.2] \\
11.2
\end{tabular} \& 3
3

1

4 \& | M1 for a correct rearrangement to isolate the a term and |
| :--- |
| M1 for a correct multiplication by 2 |
| and |
| M1 for a correct division by t^{2} |
| M2 for $15.5+2.5 \times 8.5$ |
| B1 for two of $15.5,2.5,8.5$ seen |
| M2 for $1 / 2(25+10) 16(=280)$ |
| or M1 for appreciation of distance from area and M1 for their $280 \div 25$ (dep on M1) |

\hline | $9 \quad$ (a) |
| :--- |
| (b) |
| (c) (i) |
| (ii) | \& | $\begin{array}{rll} 15 & 18 & 3 n+3 \text { or } 3(n+1) \\ 6 & 10 & \\ 25 & 36 & (n+1)^{2} \end{array}$ |
| :--- |
| 14 $\begin{aligned} & 1 / 2+p+q=9 \\ & {[p=] 3} \\ & {[q=] \frac{11}{2}} \end{aligned}$ | \& 2

1

5 \& | B2 for $15,6,25$ |
| :--- |
| or B1 for two correct values |
| B3 for 18, 10, 36 |
| or B1 for each correct value |
| B2 for $3 n+3$ oe or M1 for $3 n+k$, for any k |
| B2 for $(n+1)^{2}$ oe or M1 for a quadratic expression |
| M1 for $(n+1)(n+2)=240$ or better or $15 \times 16=240$ |
| B2 for $4 p+2 q=23$ |
| or B1 for $1 / 2 \times 2^{3}+p \times 2^{2}+q \times 2$ oe |
| M1 for correct multiplication and subtraction of their equations |
| A1 for $[p=] 3$ or $[q=] \frac{11}{2}$ |
| If 0 scored then $\mathbf{S C} 1$ for either correct |

\hline
\end{tabular}

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE - October/November 2013	0580	43

$\left.\begin{array}{|l|l|l|l|}\hline 10 \text { (a) } & \frac{x}{x+3} \text { cao } & \mathbf{3} & \begin{array}{l}\text { B1 for }(x+3)(x-3) \\ \text { B1 for } x(x-3)\end{array} \\ \text { (b) } & \frac{3}{2} \text { and }-5 & \begin{array}{l}\text { M2 for } 15(x+1)-20 x=2 x(x+1) \\ \text { or M1 for multiplication by one denominator only } \\ \text { or } \frac{15(x+1)-20 x}{x(x+1)} \\ \text { and B2 for } 2 x^{2}+7 x-15[=0] \\ \text { or B1 for } 15 x+15-20 x \text { or } 2 x^{2}+2 x \\ \text { and M2 for }(2 x-3)(x+5) \text { or their correct factors or } \\ \text { formula } \\ \text { or M1 for }(2 x+a)(x+b) \\ \text { where } a b=-15 \text { or } a+2 b=7\end{array} \\ \text { A1 for } x=\frac{3}{2} \text { and }-5\end{array}\right]$

MARK SCHEME for the May/June 2013 series

0580 MATHEMATICS

0580/41
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	41

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
www	without wrong working
art	anything rounding to
soi	seen or implied

Qu.	Answer	Mark	Part marks
$1 \begin{array}{lll}1 & \text { (a) } & (1) \\ & & \\ \text { (b) }\end{array}$	[0]8 15	1	
	$\frac{1.8}{27} \times 60[=4]$ oe	M2	M1 for $\frac{1.8}{27}$ oe $[0.0667$ or better]
	275	3	M2 for $\frac{15-4}{4} \times 100$ or
			M1 for $\frac{15-4}{4}$ or $\frac{15}{4} \times 100$ or oe 375
	73.3[3...]	3	M2 for $\frac{1.8}{15} \times 60[=7.2 \mathrm{~min}]$ and $\frac{27-\text { their } 7.2}{27} \times 100$ oe
			or M1 for $\frac{1.8}{15} \times 60[=7.2 \mathrm{~min}]$ or final answer of $26.6[6 \ldots$...] or 26.7
	25	2	M1 for $\frac{9}{\text { figs } 36}$ oe

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	41

Qu.	Answer	Mark	Part marks
2 (a) (b) (c) (i) (ii) (iii) (d)	3, $0.33[3 \ldots], 1$ Correct quadratic curve Correct exponential curve Answer in range $1.2<x<1.4$ Answer in range $1.2<x<1.35$ Answer in range $0.55<x<0.7$ Correct tangent drawn And answer in range $-2.5<m<-1.5$	3 3 1 1 1 3	B1 for each correct value B2FT for 7 correct points or B1FT for 5 or 6 correct points B2FT for 7 correct points or B1FT for 5 or 6 correct points Not from a line other than $y=4$ ($\pm 1 \mathrm{~mm}$) B1 for correct tangent at $x=0.5$ B2 for answer in range dep on close attempt at tangent M1 for [-] $\frac{\text { rise }}{\text { run }}$ used with values soi from tangent, dep on close attempt at tangent or answer in range $1.5<m<2.5$ or SC1 for close attempt at tangent to exponential curve and answer in the range $1.6<m<2.2$
$3 \quad$ (a) (i) (ii) (iii) (iv) (b) (i) (ii)	3.2 4.2 4.6 196 100, 46, 12 4	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	B1 for 2 correct M1 for frequency of 60 or 140 seen in workspace

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	41

Qu.	Answer	Marks	Part marks
4 (a) (b) (i) (ii) (iii) (iv) (c)	Enlargement [centre] $(-3,4)$ [scale factor] 3 Image at (15), (4, 5), (4, 6), (1, 7) Image at $(5,1),(8,1),(8,3),(5,2)$ Image at $(-4,3),(-1,3),(-1,6),(-4,9)$ $\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$ Reflection $y=x$ oe	1 1 2 2 2 2 2	Do not allow column vector for coordinates SC1 for translation by $\binom{5}{k}$ or $\binom{k}{4}$ SC1 for reflection in $y=2$ SC1 for three correct vertices or shape with vertices at $(-4,1)$ and $(-1,1),(-1,4)$ and $(-4,7)$ $\mathbf{S C} 1$ for $\left(\begin{array}{ll}1 & 0 \\ 0 & k\end{array}\right), \mathrm{k} \neq \pm 1$ or $\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$ B1 B1 independent
5 (a) (b) (c)	171.25 (or 171 or 171.2 or 171.3) www $160<x \leq 165 \text { oe }$ Blocks with heights of $1.8,1.2,1$, with correct interval widths and no gaps	1	$\begin{aligned} & \text { M1 for } 5 \times 155+9 \times 162.5+18 \times \\ & 172.5+10 \times 185 \quad[=7192.5] \end{aligned}$ and M1 (dep on M1) for their $\Sigma f x \div 42$ B3 for 2 correct blocks or B2 for 1 correct block or B1 for 3 correct frequency densities or heights or 3 correct widths

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	41

Qu.		Answer	Marks	Part marks

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	41

Qu.	Answer	Mark	Part marks
7 (a)	$6.61 \text { (6.614...) www }$	6	B1 for $\frac{x+2}{2 x+3}=\frac{9}{16}$ oe M1 for $16(x+2)=9(2 x+3)$ or better A1 for $[x=] 2.5$ M2 for $\sqrt{ }\left\{(2 \times \text { their } x+3)^{2}-(\right.$ their $x+$ 2) ${ }^{2}$ \} or M1 for $(2 \times \text { their } x+3)^{2}-($ their $x+$ 2) ${ }^{2}$ or SC2 for final answer of $4 \sqrt{ } 13$ or $\frac{7 \sqrt{15}}{2}$ or better
(b) (i)	$\text { White }=8.5, \quad \text { red }=11$	5	SC1 for final answer of $5 \sqrt{ } 7$ or better B3 for $7 w+5(w+2.5)=114.5$ or for $7(r-2.5)+5 r=114.5$ oe B1 for 8.5 or 11 or $\mathbf{S C 2}$ for $7 w+5 \times w+2.5=114.5$ leading to $9.33[3 \ldots$...] or $\mathbf{S C 1}$ for $7 w+5 \times w+2.5=114.5$ OR B1 for $r=w+2.5$ oe B1 for $7 w+5 r=114.5$ oe M1 for elimination of a variable A1 for 8.5 or 11
(ii) (a)	$\begin{aligned} & \frac{42}{132} \text { or } \frac{21}{66} \text { or } \frac{14}{44} \text { or } \frac{7}{22} \\ & (0.318 \text { or } 0.3181 \text { to } 0.3182) \end{aligned}$	2	$\text { M1 for } \frac{7}{12} \times \frac{6}{11}$
(ii) (b)	$\begin{aligned} & \frac{70}{132} \text { or } \frac{35}{66} \\ & (0.53[0] \text { or } 0.5303 \ldots) \end{aligned}$	3	M2 for $\frac{7}{12} \times \frac{5}{11}+\frac{5}{12} \times \frac{7}{11}$ or $1-$ their $(\mathrm{a})-\frac{5}{12} \times \frac{4}{11}$ or M1 for $\frac{7}{12} \times \frac{5}{11}$ or $\frac{35}{132}$ or SC1 for $\frac{70}{144}$ oe from replacement

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	41

Page 8	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	41

Qu.	Answer	Mark	Part marks
(c) (d) (e)	$\begin{aligned} & \frac{x-7}{2} \\ & -2 \\ & 1.158 \times 10^{77} \end{aligned}$	1 4	M1 for $y-7=2 x$ or $x=2 y+7$ or -7 then $\div 2$ clearly seen in correct order with arrow or better or $\frac{y-7}{2}$ B3 for 1.16×10^{77} or $1.1579 \ldots \times 10^{77}$ or 1.157×10^{77} or B2 for 2^{256} seen or B1 for 2^{8} seen or 256
10 (a) (b) (i) (ii) (iii) (c) (i) (ii) (d)	50, 70 $10 n$ oe 51, 71 $10 n+1$ oe 212 $20 n+12$ $20 n+152$ $5 \times 3^{2}+6 \times 3=63$ and $11+21+31=63$ or $32+31=63$ or $11+52=63$ 560 Complete solution with no errors seen and a conclusion e.g. $\begin{aligned} & 5 n^{2}+6 n+10(n+1)+1 \\ & =5 n^{2}+6 n+10 n+10+1 \\ & =5 n^{2}+10 n+5+6 n+6 \\ & =5 n^{2}+10 n+5+6 n+6 \\ & =5(n+1)^{2}+6(n+1) \end{aligned}$		B1 for $5 n^{2}+6 n+10 n+10+1$ or better B1 for use of $5(n+1)^{2}=5 n^{2}+10 n+5$ oe at any stage B1 for use of $6 n+6=6(n+1)$ oe at any stage

MARK SCHEME for the May/June 2013 series

0580 MATHEMATICS

0580/42
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	42

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
www	without wrong working
art	anything rounding to
soi	seen or implied

Qu	Answers	Mark	Part Marks
	$\frac{6}{5+6+3} \times 560 \quad[=240]$	2	Accept 'of' used instead of \times M1 for $560 \div(5+6+3)$
	120	1	
	90	2	M1 for $\frac{3}{8} \times 240$ oe
	96120 final answer	2	M1 for their $(a)(\mathrm{ii}) \times 75+(560-\operatorname{their}($ a $)(\mathrm{ii})) \times 198$ oe
	187.5[0] final answer	3	M2 for $\frac{198}{1+0.056}$ oe
			or M1 for $(100+5.6)[\%]=198$ oe seen
	184[.2....]	3	M2 for $\frac{36 \times 0.75-9.5}{9.5} \times 100$ oe
			$\begin{aligned} & \text { or M1 for } \frac{36 \times 0.75}{9.5} \times 100 \text { or } 36 \times 0.75-9.5 \quad[17.5] \\ & \text { used } \\ & \text { implied by answer } 84.2 \\ & \text { or SC1 for final answer } 284[.2 . .] \end{aligned}$
(e)	69.4 and 69[.0] cao	3	SC2 for one correct or both correct but reversed M1 for two of $10.85,10.95,23.65$ or 23.75 seen or $2(23.7+10.9)+4(0.05)$ or $2(23.7+10.9)-4(0.05)$

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	42

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
(a) (i) \\
(ii) \\
(iii) \\
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Translation, \(\binom{-5}{8} \mathrm{oe}\) correct trapezium at \((2,2)\) \((4,3)(4,5)(2,5)\) correct trapezium at \((4,2)(5,4)(7,4)(7,2)\) \\
Shear \\
\(x\)-axis (oe) invariant \\
2 \\
rectangle at \((-3,2)\) \\
\((1,2)(1,8)(-3,8)\)
\end{tabular} \& 1,1
2
3

1 \& | Brackets needed for vector |
| :--- |
| $\operatorname{Not}(-5,8),(-58)$ |
| $\mathbf{S C 1}$ for reflection in $x=-1$ or vertices only |
| M2 for 4 correct vertices on grid or in working or M1 for $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cccc}2 & 2 & 4 & 4 \\ -4 & -7 & -7 & -5\end{array}\right)$ |
| or SC1 for 3 vertices correct or complete shape in correct orientation but wrong position |
| SC1 for all vertices only or correct orientation and size, wrong position |

\hline | 3 (a) |
| :--- |
| (b) |
| (c) |
| (d) (i) | \& | $0,2,0,-3$ |
| :--- |
| Correct curve |
| $y=-1$ indicated |
| $x=1.3$ to 1.4 and 4.1 to 4.2 |
| line drawn from $(0,2)$ to touch curve |
| (2.5 to $2.75,3$ to 3.4) |
| rise/run e.g. (their y 2)/their x | \& | B4 |
| :---: |
| B1 |
| B1 |
| M1 |
| |
| A1 |
| M1 |
| A1 | \& | B2 for 3 correct or $\mathbf{B} 1$ for 2 correct |
| :--- |
| B3FT for 8 points |
| B2FT for 7 or 6 points |
| B1FT for 5 or 4 points |
| e.g. Could be mark[s] on curve isw other lines if not clearly used |
| No daylight at point of contact If short, must cross at $(0,2)$ within $1 / 2$ small square when extended |
| dep on attempt at a tangent from (0,2) in (d)(i) and uses scales correctly |
| Can be implied from answer- check on tangent for their rise for a run of 1 |
| ($1 / 2$ small square) |
| ww2 dep on attempt at a tangent from $(0,2)$ in (d)(i) |

\hline
\end{tabular}

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	42

4	227 or 226.95 to 227.01	2	M1 for $\pi \times 8.5^{2}$
	5.35	1	
	$39.0[0]$ to 39.0[1]	2	M1 for $\sin [M O B]=\frac{\text { their } b}{8.5}$ oe Dep on their $b<8.5$
	30.2 or 30.3 or 30.24 to 30.27	3	M2 for $\frac{360-4 \times 39}{360} \times 2 \times \pi \times 8.5$ oe or M1 for $\frac{a}{360} \times 2 \times \pi \times 8.5$ oe where $0<a<360$
			Implied by 5.78 to 5.79 or 11.5 to 11.6 or 23.14 to 23.15 or 23.1 or 23.2 or 41.83 to 41.84 or 41.8
	$\begin{aligned} A B & =B C \\ T A & =T C \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	isw comments or reasons
			If $\mathbf{0}$ scored $\mathbf{S C} \mathbf{1}$ for "all three sides the same" oe [SSS] and no mention of angles
$\begin{array}{ll}5 & \text { (a) } \\ & \text { (b) } \\ & \\ & \text { (c) }\end{array}$	$\frac{27}{x}$ final answer	1	
	$\frac{25}{x-2}$ final answer	1	
	$\frac{25}{x-2}-4=\frac{27}{x}$ oe	M1	FT their (b) $-4=$ their (a) oe must be eqn in x
	$25 x-4 x(x-2)=27(x-2)$ oe	M1	FT $\frac{25}{x-2}+4=\frac{27}{x}$ oe $\underline{\text { only }}$ for $2^{\text {nd }}$ and $3^{\text {rd }}$ M mark If all on one side then condone omission of ${ }^{\prime}=0$ '
	$4 x^{2}+27 x-25 x-8 x-54[=0]$ oe	M1dep	Dep on $2^{\text {nd }}$ M1 Must see brackets expanded before this award and terms on one side of eqn
	$2 x^{2}-3 x-27=0$ without error seen	A1	Must see $4 x^{2}-6 x-54=0$ first
(d)	$-3, \quad 4.5$	3	B2 for $(2 x-9)(x+3)$ or SC1 for $(2 x+a)(x+b)$ where a and b are integers and $a+2 b=-3$ or $a b=-27$
(e)	6 cao	1	

Page 5 Mark Scheme	Syllabus	Paper	
	IGCSE - May/June 2013	0580	42

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
(i) \\
(ii) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\(\frac{12^{2}+21^{2}-15^{2}}{2 \times 12 \times 21}\) \\
44.41 to 44.42 \\
88.2 or 88.15 to 88.19 \\
7.74 or 7.736 to \(7.737 \ldots\) www
\end{tabular} \& M2
A2

2

4 \& | M1 for $15^{2}=12^{2}+21^{2}-2 \cdot 12.21 \cos M$ |
| :--- |
| $\mathbf{A 1}$ for $[\cos =] 0.714$ or 0.7142 to 0.7143 or $\frac{360}{504}$ oe |
| M1 for $0.5 \times 12 \times 21 \times \sin (44.4)$ oe |
| B1 for 55 soi |
| M2 $\frac{6.4}{\sin (\text { their } R)} \times \sin 82$ oe |
| or M1 for $\frac{6.4}{\sin (\text { their } R)}=\frac{P R}{\sin 82}$ oe |

\hline | 7 (a) (i) |
| :--- |
| (ii) |
| (iii) |
| (iv) |
| (v) |
| (b) | \& | $\binom{15}{21}$ |
| :--- |
| not possible oe |
| (2) final answer |
| $\left(\begin{array}{cc}4 & 13 \\ 0 & 0\end{array}\right)$ |
| $\left(\begin{array}{cc}-5 & -9 \\ 1 & 0\end{array}\right)$ |
| $\frac{1}{2}\left(\begin{array}{cc}3 & -4 \\ -1 & 2\end{array}\right)$ or better isw | \& 2

1

2 \& | M1 for $30-28$ |
| :--- |
| B1 for one correct row or column |
| B1 for $k\left(\begin{array}{cc}3 & -4 \\ -1 & 2\end{array}\right)$ seen or implied or $\frac{1}{2}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ seen |

\hline | (a) |
| :--- |
| (b) (i) | \& \[

$$
\begin{aligned}
& \text { hat } \frac{5}{8}, \frac{3}{8} \\
& \text { scarf } \frac{2}{3}, \frac{1}{3} \\
& \frac{1}{6} \\
& \frac{5}{6} \\
& \frac{15}{48} \text { oe } \\
& \frac{5}{24}
\end{aligned}
$$

\] \& | 1 1 |
| :--- |
| 2FT |
| 2FT | \& | 1 mark per pair in correct place |
| :--- |
| FT their $\frac{3}{8} \times \frac{5}{6}$ correctly evaluated M1 $\frac{3}{8} \times \frac{5}{6}$ FT from their tree |
| FT their $\frac{5}{8} \times \frac{1}{3}$ correctly evaluated M1 $\frac{5}{8} \times \frac{1}{3}$ FT from their tree |

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	42

\begin{tabular}{|c|c|c|c|}
\hline (iii)
(c) \& \begin{tabular}{l}
\[
\frac{13}{48} \text { cao }
\] \\
\(\frac{170}{240}\) or \(\frac{85}{120}\) or \(\frac{34}{48}\) or \(\frac{17}{24}\) cao
\end{tabular} \& 2
3 \& \begin{tabular}{l}
M1 for their \(\frac{3}{8} \times \frac{1}{6}+\) their (b)(ii) soi M2 for \(1-\frac{5}{8} \times \frac{2}{3} \times \frac{7}{10}\) FT their tree or \(\frac{3}{8}+\frac{5}{8} \times \frac{1}{3}+\frac{5}{8} \times \frac{2}{3} \times \frac{3}{10}\) oe \\
or M1 for ["wears all" \(=\)] \(\frac{5}{8} \times \frac{2}{3} \times \frac{7}{10}\) FT their tree seen
\end{tabular} \\
\hline \begin{tabular}{l}
(a) \\
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
371 or 371.1... \\
1740 or 1743.6 to 1744.2 \\
87 cao \\
www 5
\end{tabular} \& 4

4

5 \& | M3 for $(6 \times 4 \times 12)+(2 \times 6 \times 0.5 \times 4 \times 4 \times \sin 60)$ oe or M2 for area of 1 or 2 hexagons |
| :--- |
| or M1 for area of one relevant triangle or trapezium or rectangle within hexagon |
| If $\mathbf{0}$ scored $\mathbf{S C 1}$ for 288 shown |
| M3 for $\frac{12000}{4} \div\left(\pi \times 0.74^{2}\right)$ oe or SC2 for figs 174[3..] or 174[4..] or B1 for $\pi \times 0.74^{2}$ seen [1.72..] or B1 for $12000 / 4$ soi by 3000 |
| B4 for 87.39 to 87.43 |
| or M3 for $[r=] \sqrt{\frac{\text { figs } 12}{\pi \times \text { figs } 5}}$ oe |
| or M2 for $\left[r^{2}=\right]=\frac{\text { figs } 12}{\pi \text { figs } 5}$ oe |
| or M1 for figs $12=\pi r^{2} \times$ figs 5 |

\hline | (a) (i) |
| :--- |
| (ii) |
| (b) | \& final answer $\frac{25-8 x}{20}$ final answer $\frac{2 x^{2}+5 x+9}{3(x+3)}$

$$
\begin{aligned}
& x=2 / 3 \text { oe or } 0.667 \text { or } 0.6666 \text { to } \\
& 0.6667 \\
& y=-3
\end{aligned}
$$ \& 2

3

3 \& | M1 for $\frac{5 \times 5-4 \times 2 x}{5 \times 4}$ or better seen B1 for $2 x^{2}+6 x-x-3$ soi and B1 for denom $3(x+3)$ or $3 x+9$ seen |
| :--- |
| M1 for correct method to eliminate one variable A1 for $x=2 / 3$ oe or 0.667 or 0.6666 to 0.6667 or $y=-3$ |

\hline
\end{tabular}

Page 7 Mark Scheme	Syllabus	Paper	
	IGCSE - May/June 2013	0580	42

(c)	final answer $\frac{7}{2 x+3}$ www	4	B1 for $7(x+3)$ in numerator and $\mathbf{B 2}$ for $(2 x+3)(x+3)$ in denominator or SC1 for $(2 x+a)(x+b)$ where a and b are integers and $a+2 b=9$ or $a b=9$ After B1 scored, SC1 for final answer $\frac{7}{2(x+1.5)}$ or $\frac{3.5}{x+1.5}$
11 (a)	$3^{2}+1^{2}$	1	Ignore attempt to evaluate $\sqrt{10}$
(b) (i)	$\frac{\sqrt{10}}{3}$ final answer	1	
(ii)	$\frac{10}{3}$ final answer	2	M1 for their $\frac{\sqrt{10}}{3} \times \sqrt{10}$ or their $\left(\frac{\sqrt{10}}{3}\right)^{2}+(\sqrt{10})^{2}$ implied by 3.33 seen
(c)	$\frac{100}{27}$ or $3 \frac{19}{27}$ isw conversion or 3.7[03] to 3.7[04]	2	M1 for $3 \times\left(\frac{\sqrt{10}}{3}\right)^{n}$ oe where n is 3 or 4 or for $\left[O P_{4}=\right] \sqrt{\frac{1000}{81}}$ or for their (b)(ii) $\times\left(\frac{\sqrt{10}}{3}\right)^{n}$ where n is 1 or 2
(d) (i)	18.43...	2	M1 for $\tan \left[P_{1} O P_{2}\right]=\frac{1}{3}$ oe
(ii)	18.4[3...]	1	
(iii)	20	3	SC2 for 19 or M1 for $\frac{360}{18.4[3 . . .]}$

MARK SCHEME for the May/June 2013 series

0580 MATHEMATICS

0580/43
Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	43

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
www	without wrong working
art	anything rounding to
soi	seen or implied

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	43

2 (a) (i) (ii) (b) (i) (ii)	Perpendicular bisector of $Q R$ ruled with 2 correct sets of arcs centred Q and R Bisector of angle $S P Q$ ruled with correct arcs. (Marks on PS and $P Q$ and correct pair of arcs) Compass drawn arc centre R with radius $6 \mathrm{~cm}(\pm 2 \mathrm{~mm})$ Correct region shaded cao 217 to 221 6360 or 6361 to 6363 165 or 164.9 to 165	B2 1dep 1 2 2	B1 for correct bisector ruled B1 for correct angle bisector ruled B1 for any compass drawn arc centre R not used in any construction with no feathering Dependent on all B4 marks for the correct loci M1 for $\pi \times 45^{2}$ M1 for $\frac{210}{360} \times 2 \pi \times 45$
3 (a) (i) (ii) (iii) (b) (c) (i)	$\begin{aligned} & x \geq 5 \\ & y \geq 11 \\ & x+y \geq 20 \\ & 4 x+8 y \leq 160 \text { and divide by } 4 \\ & x=5 \text { ruled } \\ & y=11 \text { ruled } \\ & x+y=20 \text { ruled } \\ & x+2 y=40 \text { ruled } \end{aligned}$ Correct shading of unwanted region 29	1 1 1 1 2 2 1 dep	-1 once for strict inequalities in (i) to (iii) If there is a final inequality it must be the given one Must be on correct grid line Must be on correct grid line B1 for one axis intercept correct when extended if necessary but not parallel to an axis B1 for one axis intercept correct when extended if necessary but not parallel to an axis Dependent on 6 marks earned for the boundaries M1 for $x+y$ evaluated where (x, y) is a point in their quadrilateral and x and y are integers

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	43

		3080	2	M1 for $1 / 2 \times 7 \times 22 \times 40$
	(b)	46.2 or 46.18 to 46.2 www	4	M3 for $\sqrt{7^{2}+22^{2}+40^{2}}$ or M2 for $7^{2}+22^{2}+40^{2}$ soi by 2133 or M1 for correct Pythagoras on one face
	(c)	8.7 or 8.7 to 8.72 www	3	M2 for $\sin ^{-1} \frac{7}{\text { their }(b)}$ oe
				or M1 for $\sin =\frac{7}{\text { their(b) }}$ oe
	(d)	217	3	M1 for $\frac{4}{3} \times \pi \times 1.5^{3}$ soi by 14.1 to 14.14 and M1 dep for their (a) \div their 14.14 soi by 218. Dependent on M1 earned
	(e) (i)	25.13875 final answer	2	B1 for 4.55 and 11.05 seen or 25.13875 seen and then spoiled
	(ii)	25.14	1FT	Strict FT their (e)(i) correct to 4s.f. if rounding is possible
5	(a)	-5.04, 1.75, 0	3	B1 for each correct value
	(b)	Fully correct curve	5	B3FT for 10 correct plots from their (a) B2FT for 8 or 9 correct plots or B1FT for 6 or 7 correct plots and SC1 for two branches not joined
	(c)	-1.6 to - 1.5	1	
		$\begin{aligned} & -0.4 \text { to }-0.3 \\ & 1.8 \text { to } 1.9 \end{aligned}$		
	(d)	$\begin{aligned} & -2.6 \text { to }-2.5 \text { www } \\ & -0.4 \text { to }-0.3 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
			1	After $\mathbf{0}$ scored, M1 for $y=2 x-2$ drawn
	(e)	3.25 to 4.25 with correct tangent	3	B1 for correct tangent
				B2 for answer in range dep on close attempt at tangent
				M1dep for [-] $\frac{\text { rise }}{\text { run }}$ used with values soi from tangent, dep on correct or close attempt at tangent

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	43

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\(\frac{3}{10}\) correctly placed \\
\(\frac{6}{9}\) and \(\frac{3}{9}\) correctly placed \\
\(\frac{7}{9}\) and \(\frac{2}{9}\) correctly placed
\[
\frac{42}{90} \text { or } \frac{21}{45} \text { or } \frac{14}{30} \text { or } \frac{7}{15}
\]
\end{tabular} \& 1 \& \begin{tabular}{l}
Accept 0.3 \\
Accept 0.667 or better and 0.333 or better \\
Accept 0.778 or better and 0.222 or better \\
M2 for \(\frac{7}{10} \times \frac{3}{9}+\frac{3}{10} \times \frac{7}{9}\) soi by 0.467 or better \\
or M1 for \(\frac{7}{10} \times \frac{3}{9}\) or \(\frac{3}{10} \times \frac{7}{9}\) soi by 0.233 or better
\end{tabular} \\
\hline \begin{tabular}{l}
(ii) \\
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Triangle at \((1,3)(1,9)(3,3)\)
\[
\left(\begin{array}{ll}
1 \& 0 \\
0 \& 3
\end{array}\right)
\] \\
Shear \\
\(x\)-axis oe invariant \\
[factor] 2
\[
\left(\begin{array}{ll}
1 \& 2 \\
0 \& 1
\end{array}\right)
\]
\end{tabular} \& \begin{tabular}{l}
2 \\
1
1
1 \\
2FT
\end{tabular} \& \begin{tabular}{l}
SC1 for correct vertices not joined or triangle \((1,1)(3,1)(1,7)\) \\
SC1 for \(\left(\begin{array}{ll}1 \& 0 \\ 0 \& k\end{array}\right), k \neq \pm 1\) or 0 \\
or \(\left(\begin{array}{ll}3 \& 0 \\ 0 \& 1\end{array}\right)\) \\
FT from their 2 in (b)(i) \\
\(\mathbf{S C 1}\) for \(\left(\begin{array}{ll}1 \& k \\ 0 \& 1\end{array}\right), k \neq 0\) \\
or \(\left(\begin{array}{cc}1 \& 0 \\ 2 \mathrm{FT} \& 1\end{array}\right)\)
\end{tabular} \\
\hline \begin{tabular}{l}
(a) \\
(i) \\
(ii) \\
(iii) \\
(b) (i) \\
(ii) \\
(iii)
\end{tabular} \& \[
\begin{aligned}
\& 27 \\
\& 54 \\
\& 153 \\
\& 59.6 \text { or } 59.57 \ldots \text { www } \\
\& 22 .[0] \text { or } 21.99 \ldots \text { www } \\
\& 81[.0]
\end{aligned}
\] \& 1
1
1
4

3 \& | M2 for $45^{2}+32^{2}-2 \times 45 \times 32 \times \cos 100$ or M1 for implicit cos rule and A1 for 3549.... |
| :--- |
| M2 for $324 \div(1 / 2 \times 32 \times \sin 67)$ |
| or M1 for [324 =] $1 / 2 \times 32 \times x \times \sin 67$ |
| B1 for 2^{2} or $(1 / 2)^{2}$ oe seen or $1 / 2 \times 16 \times 1 / 2$ their $(\mathrm{b})($ ii $) \times \sin 67$ |

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE - May/June 2013	0580	43

(a) (i) (ii) (iii) (b) (c) (d) (e)	14 8 30 - their (ii) $\frac{11}{80}$ 16, 4 18.0625 rot to 3 sf or better or 18.1 www Correct widths with no gaps $2^{\text {nd }}$ block $\mathrm{w}=5, \mathrm{fd}=2.4$ $3^{\text {rd }}$ block $\mathrm{w}=15 \mathrm{fd}=1.2$ $4^{\text {th }}$ block $\mathrm{w}=10$ and $\mathrm{fd}=1.6$ $5^{\text {th }}$ block $\mathrm{w}=10$ and $\mathrm{fd}=0.4$	1 1FT 2 2 3 1 1 1 1 FT 1 FT 1 FT	$\mathbf{S C 1}$ for $\frac{69}{80}$ B1 for each correct value M1 for $\Sigma m f$ for m as mid values of $5,12.5,22.5$, 35 and 45 ($=1445$) and M1 dep for $\Sigma m f \div 80$, dep on M1 earned Strict FT from their (c) Strict FT from their (c) After $\mathbf{0}$ scored for blocks, SC1 for 4 correct fds soi by correct heights
(a) (i) (ii) (iii) (b)	4.5 or $41 / 2$ $(x-6)(x-1)$ 1, 6 6 $a=1 / 3 \mathrm{oe}, b=1 / 2$ oe	M2 A1FT 4	M2 for a complete correct method or M1 for one correct step at any stage. M1 for $(x+a)(x+b)$ where $a b=6$ or $a+b=-7$ FT their brackets dep on M1 earned After M0 scored SC1 for 1, 6 as answer B1 for $2(3 x-2)+x+2=4 \times 10$ oe and B1 for correct multiplication of a bracket and M1 for correct rearrangement of their linear equation without brackets to $a x=b+c+d$ or better B1 for any one of $\begin{aligned} 1 & =a+b+1 / 6 \text { oe } \\ 5 & =8 a+4 b+2 / 6 \mathrm{oe} \\ 14 & =27 a+9 b+3 / 6 \mathrm{oe} \\ 30 & =64 a+16 b+4 / 6 \mathrm{oe} \end{aligned}$ Or any other correct equation and B1 for another of the above equations and M1 for equating one coefficient or correct rearrangement to give a or b as subject and M1 for subtracting to eliminate a or b or correct substitution for their a or their b A1 for $a=1 / 3$ oe or $b=1 / 2$ oe

[^0]: $®$ IGCSE is the registered trademark of Cambridge International Examinations.

[^1]: $®$ IGCSE is the registered trademark of Cambridge International Examinations.

[^2]: ® IGCSE is the registered trademark of Cambridge International Examinations.

[^3]: ® IGCSE is the registered trademark of Cambridge International Examinations.

[^4]: ® IGCSE is the registered trademark of Cambridge International Examinations.

