Problem : 09709/11/M/J/23/Q1

Solve the equation 4 sin 6 + tan 6 = 0 for 0° < 6 < 180°.
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Problem : 09709/11/M/J/23/Q2

(a) Find the first three terms in the expansion, in ascending powers of x, of (2 + 3x)*.

(2]

(b) Find the first three terms in the expansion, in ascending powers of x, of (1 — 2x)5.

(2]
(¢) Hence find the coefficient of x° in the expansion of (2 + 3x)*(1 — 2x)°. [2]
S—

A (2 (2 w’)q:(g\ 20 (20 + o \zﬁ-\(ax)‘ *
3) M7 (50
= 1b+ 9bx + 210k
(b (1-20) = (5) (-3 (€ \20+(5) 2
— 4 — \ox+4on”
& Q-*“bx)t‘( -0 = CLbx — ClLoaLb—H—lle
— —logx"

= —\oy

_—



Problem : 09709/11/M/1/23/Q4

2
y = g(x)
/ y = f(x)
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The diagram shows graphs with equations y = f(x) and y = g(x).

Describe fully a sequence of two transformations which transforms the graph of y = f(x) to y = g(x).
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Problem : 09709/11/M/1/23/Q4

C

A
8cm

The diagram shows a sector ABC of a circle with centre A and radius 8cm. The area of the sector is
%n cm?. The point D lies on the arc BC.

Find the perimeter of the segment BCD.
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Problem : 09709/11/M/1/23/Q5

The line with equation y = kx — k, where k is a positive constant, is a tangent to the curve with equation
1 _—

2x°

Find, in either order, the value of k and the coordinates of the point where the tangent meets the curve.
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Problem : 09709/11/M/J/23/Q6

7
2
The first three terms of an arithmetic progression are 1—, 2p —6and p.

(a) Given that the common difference of the progression is not zero, find the value of p. [3]

(b) Using this value, find the sum to infinity of the geometric progression with first two terms
2.
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Problem : 09709/11/M/1/23/Q7

A curve has equation y = 2 + 3 sin %x for 0 < x < 4m.

(a) State greatest and least values of y.

3r 4n

(¢) State the number of solutions of the equation
2+351n%x: S5—=2x

for O < x < 4m.
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Problem 09709/11/M/J/23/Q8

The functions f and g are defined as follows| where a and b are constants.

flx) =1+ 2
X—d

forx>a

g(x)=bx-2forxeR

FO1) = 1+ B

(a) Given that f(7) = 2 and ef(5) = 4, find the values of a and b.
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For the rest of this question, you should use the value of a which you found in (a).

(b) Find the domain of ™.
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(¢) Find an expression for £=1(x).

'&’(_’)L)-; \ Z—

(3]



Problem 09709/11/M/J/23/Q9

Water is poured into a tank at a constant rate of 500cm? per second. The depth of water in the tank,
t seconds after filling starts, is 2cm. When the depth of water in the tank is 4 cm, the volume, V cm?,
of water in the tank is given by the formula V = %(25 +h)® - (ﬁgﬂ

(a) Find the rate at which /4 is increasing at the instant when 4 = 10 cm. [3]
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(b) At another instant, the rate at which /4 is increasing is 0.075 cm per second.

Find the value of V at this instant. [3]
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Problem : 09709/11/M/J/23/Q10
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The diagram shows part of the curve with equation y = ﬁ and parts of the linesx=1andy = 1.
T

The curve passes through the points A (1, 4) and B, (% 1)

(a) Find the exact volume generated when the shaded region is rotated through 360° about the x-axis.

(5]

(b) A triangle is formed from the tangent to the curve at B, the normal to the curve at B and the

X-axis.
Find the area of this triangle. [6]
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Problem : 09709/11/M/J/23/Q11

. s - dy . -
The equation of a curve is such that — = 6x> — 30x + 6a, where a is a positive constant. The curve

has a stationary point at (a, —15).
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(a) Find the value of a.

(b) Determine the nature of this stationary point.
(¢) Find the equation of the curve.

(d) Find the coordinates of any other stationary points on the curve.
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Problem 09709/11/M/J/23/Q12

The diagram shows a circle P with centre (0, 2) and radius 10 and the tangent to the circle at the
point A with coordinates (6, 10). It also shows a second circle Q with centre at the point where this

tangent meets the y-axis and with radius %\/5

(a) Write down the equation of circle P. [1]
YR YR
X +(4-2) = \oo

(b) Find the equation of the tangent to the circle P at A. [2]
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(¢) Find the equation of circle Q and hence verify that the y-coordinates of both of the points of
intersection of the two circles are 11. 3]
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(d) Find the coordinates of the points of intersection of the tangent and circle Q, giving the answers
in surd form. 3]
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