A line has equation y = 3x - 2k and a curve has equation $y = x^2 - kx + 2$, where k is a constant. Show that the line and the curve meet for all values of k.

$$3x-2k = x^{2}-kx+2$$

$$x^{2}-kx-3x+2k+2=0$$

$$x^{2}-(k+3)x+2k+2=0$$
As line and Curve meet $b^{2}-4ac=0$

$$[-(k+3)]^{2}-4x|x(2k+2)=0$$

$$k^{2}+6k+9-8k-8=0$$

$$k^{2}-2|c+1=0$$

$$(k-2)^{2}=0$$

$$(k-1)^{2}>0$$

A function f is defined by $f(x) = x^2 - 2x + 5$ for $x \in \mathbb{R}$. A sequence of transformations is applied in the following order to the graph of y = f(x) to give the graph of y = g(x).

Stretch parallel to the *x*-axis with scale factor $\frac{1}{2}$

Reflection in the y-axis

Stretch parallel to the y-axis with scale factor 3

Find g(x), giving your answer in the form $ax^2 + bx + c$, where a, b and c are constants. [4]

$$\begin{cases}
4(x) = x^{2} - 2x + 5 \\
g(x) = 3[(-2x)^{2} - 2(-2x) + 5]
\end{cases}$$

$$g(x) = 3[4x^{2} + 4x + 5]$$

$$g(x) = 12x^{2} + 12x + 15$$

A curve has equation $y = \frac{1}{60}(3x+1)^2$ and a point is moving along the curve.

Find the *x*-coordinate of the point on the curve at which the *x*- and *y*-coordinates are increasing at the same rate.

$$\frac{dy}{dt} = \frac{dx}{dt} = K (Say)$$

$$y = \frac{1}{60} (3x+1)^{2}$$

$$\frac{dy}{dx} = \frac{1}{60} (3x+1) \times 3$$

$$\frac{dy}{dx} = \frac{1}{10} (3x+1)$$

$$\frac{dy}{dx} = \frac{1}{10} (3x+1) \times 4$$

$$1 = \frac{1}{10} (3x+1)$$

$$10 = 3x+1$$

$$x = 3$$

The circumference round the trunk of a large tree is measured and found to be 5.00 m. After one year the circumference is measured again and found to be 5.02 m.

- (a) Given that the circumferences at yearly intervals form an arithmetic progression, find the circumference 20 years after the first measurement. [2]
- (b) Given instead that the circumferences at yearly intervals form a geometric progression, find the circumference 20 years after the first measurement. [3]

$$S_{1}$$
 $Q = 5$ $N = 20$ $Q = 5.02 - 5 = 0.02$
 $Q = 5 + 20 \times 0.02 = 5.40$

(b)
$$\alpha = 5 \quad n = 20 \quad n = \frac{502}{5} = 1004$$

$$= 5(1.004)^{20} = 5.42$$

Points A (7, 12) and B lie on a circle with centre (-2, 5). The line AB has equation y = -2x + 26. Find the coordinates of B.

$$(x-h)^{2} + (y-k)^{2} = h^{2}$$

$$(x+2)^{2} + (y-s)^{2} = h^{2}$$

$$(7+2)^{2} + (12-5)^{2} = h^{2}$$

$$81 + 49 = h^{2}$$

$$h^{2} = 130$$

$$(x+2)^{2} + (y-5)^{2} = 130$$

$$(x+2)^{2} + (-2x+26-5)^{2} = 130$$

$$x^{2} + 4x + 4 + 4x^{2} - 84x + 441 = 130$$

$$5x^{2} - 80x + 445 - 130 = 0$$

$$x^{2} - 16x + 63 = 0$$

$$x^{2} - 9x - 7x + 63 = 0$$

$$x(x-3) - 7(x-3) = 0$$

$$(x-9)(x-7) = 0$$

$$(x-9)(x-7) = 0$$

$$y = -2x + 26$$

$$= -249 + 26 = 8$$

$$8(9,8)$$

In the expansion of $\left(\frac{x}{a} + \frac{a}{x^2}\right)^7$, it is given that

$$\frac{\text{the coefficient of } x^4}{\text{the coefficient of } x} = 3.$$

[6]

Find the possible values of the constant a.

(a) By first obtaining a quadratic equation in $\cos \theta$, solve the equation

$$\tan \theta \sin \theta = 1$$

for
$$0^{\circ} < \theta < 360^{\circ}$$
.

(b) Show that $\frac{\tan \theta}{\sin \theta} - \frac{\sin \theta}{\tan \theta} = \tan \theta \sin \theta$.

$$\frac{\sin \theta}{\sin \theta} \times \sin \theta = 1$$

$$\frac{\sin \theta}{\cos \theta} \times \sin \theta = 1$$

$$\sin^{2} \theta = \cos \theta$$

$$(-\cos^{2} \theta + \cos \theta - 1 = 0)$$

$$\cot^{2} \theta + \cos^{2} \theta - 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$\cot^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d^{2} \theta + \cos^{2} \theta + 1 = 0$$

$$d$$

(b)
$$\frac{\tan \theta}{\sin \theta} = \frac{\sin \theta}{\sin \theta} = \frac{\sin \theta}{\sin \theta}$$

LHS
$$\frac{Sin\theta}{Sin\theta} = \frac{Sin\theta \times Cos\theta}{Sin\theta}$$

 $\frac{1}{Cos\theta} = \frac{1 - Cos^2\theta}{Cos\theta} = \frac{Sin^2\theta}{Cos\theta}$
 $\frac{Sin\theta}{Cos\theta} = \frac{Sin\theta}{Cos\theta} = \frac{Sin^2\theta}{Cos\theta} = \frac{Sin\theta}{Cos\theta} = \frac{Sin\theta}{$

 $\theta = 360 - 51.8 = 308.2^{\circ}$

The diagram shows triangle ABC in which angle B is a right angle. The length of AB is 8 cm and the length of BC is 4 cm. The point D on AB is such that AD = 5 cm. The sector DAC is part of a circle with centre D.

(a) Find the perimeter of the shaded region. [5]

(b) Find the area of the shaded region. [3]

Sol (a) $t \text{ an } x = \frac{4}{3} \quad x = t \text{ ann}^{-1} \frac{4}{3} = 0.927$ L ADC = TI - 0.927 = 2.214 $\text{Anc length} = 80 = 5 \times 2.214 = 11.07$ $\text{AC} = \sqrt{8^2 + 4^2} = 8.94$ hence perimeter = 11.07 + 8.94 = 20.01 cm

(b) Area of Shaded region

= Area of Sector - Area of DACD

= $\frac{1}{2} 5^2 \times 2.219 - \frac{1}{2} \times 5 \times 5 \times 5 \times 19 \times 2.219$ = (7.7 Cm^2)

The function f is defined by $f(x) = -3x^2 + 2$ for $x \le -1$.

- (a) State the range of f.
- **(b)** Find an expression for $f^{-1}(x)$.

The function g is defined by $g(x) = -x^2 - 1$ for $x \le -1$.

(c) Solve the equation fg(x) - gf(x) + 8 = 0.

$$\begin{cases} SM(0) & y \leq 2 \\ (b) & y = -3x^{2} + 2 \\ y - 2 = -3x^{2} \\ \frac{y - 2}{3} = x^{2} \\ x^{2} = \frac{2 - y}{3} \end{cases}$$

$$x = \pm \sqrt{\frac{2 - y}{3}}$$

$$x = \pm \sqrt{\frac{2 - y}{3}}$$

$$x = -3(x^{2} + 2x^{2} + 1) + 2$$

$$= -3(x^{4} + 2x^{2} + 1) + 2$$

$$= -3x^{4} - 6x^{2} - 1$$

$$yf(x) = -(-3x^{2} + 2x^{2} + 1) + 1$$

$$= -(9x^{4} - 12x^{2} + 4) - 1$$

$$= -9x^{4} + 12x^{2} - 5$$

$$-3x^{4} - 6x^{2} - 1 + 9x^{4} - 12x^{2} + 5 + 8 = 0$$

$$6x^{4} - 18x^{2} + 12 = 0$$

$$9x^{4} - 3x^{2} + 2 = 0$$

Let
$$x^2 = t$$

 $t^2 - 3t + 2 = 0$
 $t^2 - 2t - t + 2 = 0$
 $t(t-2) - 1(t-2) = 0$
 $(t-2)(t-1) = 0$
 $t = 2$ $t = 1$
 $x^2 = 2$ $x^2 = 1$
 $x = -\sqrt{2}$ $x = -1$

At the point (4, -1) on a curve, the gradient of the curve is $-\frac{3}{2}$. It is given that $\frac{dy}{dx} = x^{-\frac{1}{2}} + k$, where k is a constant.

(a) Show that
$$k = -2$$
. [1]

- (b) Find the equation of the curve. [4]
- (c) Find the coordinates of the stationary point. [3]

$$\int_{0}^{1} (\alpha) -\frac{3}{2} = 4^{-\frac{1}{2}} + K \\
-\frac{3}{2} = \frac{1}{2} + K \\
K = -\frac{3}{2} - \frac{1}{2} = -2$$
(b)
$$\int_{0}^{1} dy = \int_{0}^{1} (x^{-\frac{1}{2}} - 2) dx$$

$$y = \frac{x^{\frac{1}{2}}}{\frac{1}{2}} - 2x + C$$

$$y = 2x^{\frac{1}{2}} - 2x + C$$

$$-1 = 2(4)^{\frac{1}{2}} - 2(4) + C$$

$$c = -1 - 4 + 8 = 3$$

$$y = 2x^{\frac{1}{2}} - 2x + 3$$
(c)
$$\frac{dy}{dx} = x^{-\frac{1}{2}} - 2$$

$$o = \frac{1}{x^{\frac{1}{2}}} - 2$$

$$x = \frac{1}{4}$$

$$y = 2(\frac{1}{4})^{\frac{1}{2}} - 2(\frac{1}{4}) + 3 = \frac{7}{2}$$

$$(\frac{1}{4}, \frac{7}{2})$$

The diagram shows the curve with equation $x = y^2 + 1$. The points A(5, 2) and B(2, -1) lie on the curve.

(a) Find an equation of the line AB.

[2]

(b) Find the volume of revolution when the region between the curve and the line *AB* is rotated through 360° about the *y*-axis. [9]

$$\Delta y = \frac{1}{5-2} = 1$$

$$W = \frac{1-(-1)}{5-2} = 1$$

$$Eq. of line AD
$$Y - 1 = 1(x-5)$$

$$Y = X - 3$$

$$V_1 = \pi \int_{-1}^{2} (y^2 + 1)^2 dy$$

$$= \pi \int_{-1}^{2} (y^4 + 2y^2 + 1) dy$$

$$= \pi \left[\frac{y^5}{5} + 2\frac{y^3}{3} + y \right]_{-1}^{2}$$

$$= \pi \left[\left(\frac{2^5}{5} + \frac{2}{3}(2^3 + 2) - \left(\frac{(-1)^5}{5} + 2\frac{(-1)^3}{3} + (-1) \right) \right]$$

$$= \pi \left[\frac{72}{5} \right]$$$$

$$V_{2} = \Pi \int_{-1}^{2} (y+3)^{2} dy$$

$$= \Pi \left[\frac{(y+3)^{3}}{3} \right]_{-1}^{2}$$

$$= \frac{\Pi}{3} \left[5^{3} - 2^{3} \right] = \frac{117}{3} \pi$$

$$V = \Pi \left[\frac{117}{3} - \frac{78}{5} \right] = \frac{117}{5} \pi$$