Problem 0580/42/F/M/20 Q4

A solid metal cone has radius 1.65 cm and slant height 4.70 cm.

(a) Calculate the total surface area of the cone.

[The curved surface area, A, of a cone with radius r and slant height l is $A = \pi r l$.]

(b) Find the angle the slant height makes with the base of the cone.

$$4.7$$
 $0 = C05^{-7} \frac{1.65}{4.70}$

(c) (i) Calculate the volume of the cone. [The volume, V, of a cone with radius r and height h is $V = \frac{1}{3}\pi r^2 h$.]

$$= \frac{1}{3} \times \pi \times 1.65^{2} \times \sqrt{4.7^{2} - 1.65^{2}}$$

(ii) A metal sphere with radius 5 cm is melted down to make cones identical to this one.

Calculate the number of complete identical cones that are made. [The volume, V, of a sphere with radius r is $V = \frac{4}{3}\pi r^3$.]

Volume of sphere =
$$\frac{4}{3} \times \pi \times 5^3 = 523.6 \text{ cm}^3$$

" " Cone = 12.5
Number of identical = $\frac{523.6}{12.5}$
Cone