Problem : 09709/13/M/1/24/Q1
Find the coefficient of x* in the expansion of

(2-=5x)(1+3x)".
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Problem : 09709/13/M/1/24/Q2

(a)
A
\ A s/

'he diagram shows the curve y = kcos(x—¢7) where k is a positive constant and x is measured
in radians. The curve crosses the x-axis at point 4 and B is a minimum point.

Find the coordinates of 4 and B. (3]
(b) Find the exact value of 7 that satisfies the equation

3sin~" (38) +2cos ™! (%Jz) - x. 2]
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Problem : 09709/13/M/1/24/Q3

The diagram shows a sector of a circle with centre C. The radii C4 and CB each have length rcm and
the size of the reflex angle ACB is 0 radians. The sector, shaded in the diagram, has a perimeter of

65cm and an area of 225 cm?. E—
—

(a) Find the values of » and 6. [4]
(b) Find the area of triangle ACB. 2

=t (&) £5= 2v+ve —(1)
A AS = -|2-_Y"9
GS—:_ ?_Y-k)f X & S©°
~H
eg‘(:_ '2.-'\’1—'\‘ Lo
IvE_LSY Y LU0 =°
¥=|o Y= 22<

—
——

L}§0= \Dl &
e = L\.'C
(b))  Areo g Potang e AT i
= %»« lox\e % S (7-TT’L*'&>

= 49%-9 O\I\AL



Problem : 09709/13/M/)/24/Q4

(a) Show that the equation cos@(7tan@—5cosf)=1 can be written in the form

asin?6+bsin0+c = 0, where a, b and ¢ are integers to be found. [3]
(b) Hence solve the equation cos2x(7tan2x—5cos 2x) = 1 for 0° <x < 180°. [3]
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Problem : 09709/13/M/1/24/Q5

- . . - 2 1
T'he equation of a curve is y = 2x° — TR 3.

(a) Find the coordinates of the stationary point.

(2]

(b) Determine the nature of the stationary point.

(¢) For positive values of x, determine whether the curve shows a function that is increasing,
decreasing or neither. Give a reason for your answer. [2]
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Problem : 09709/13/M/1/24/Q6

- . dy -,
A curve passes through the point (%, = 3) and is such that —— = —"07 .
: dx (5x—3)2
(a) Find the equation of the curve. [4]

(b) The curve is transformed by a stretch in the x-direction with scale factoré— followed by a translation
t‘( 2 )
0 :
10

Find the equation of the new curve. [3]
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Problem : 09709/13/M/1/24/Q7

The first term of an arithmetic progression is 1.5 and the sum of the first ten terms is 127.5 .

(a) Find the common difference. [2]

(b) Find the sum of all the terms of the arithmetic progression whose values are between 25 and 100.
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Problem : 09709/13/M/1/24/Q8

A circle with equation x* +y? —6x+2y— 15 = 0 meets the y-axis at the points 4 and B. The tangents to
the circle at 4 and B meet at the point P.

Find the coordinates of P. [8]
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Problem : 09709/13/M/J/24/Q9

(0] 1 3

The diagram shows the curve with equation y =V 2x* +10.

(a) Find the equation of the tangent to the curve at the point where x = 3. Give your answer in the

form ax+ by+c = 0 where a, b and c are integers. [5]
(b) The region shaded in the diagram is enclosed by the curve and the straight lines x = 1, x = 3 and

y=0.

Find the volume of the solid obtained when the shaded region is rotated through 360° about the

X-axis. [3]
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Problem : 09709/13/M/J/24/Q10

The geometric progression a,, a,, a,, ... has first term 2 and common ratio » where » > 0.
e R - )
Itis given that Fa,+7a, = 8.

(a) Find the value of r. (3]
(b) Find the sum of the first 20 terms of the geometric progression. Give your answer correct to

4 significant figures. (2]
(¢) Find the sum to infinity of the progression a,, a,, a, ... . [3]
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Problem : 09709/13/M/J/24/Q11

The function f is defined by f(x) = 10+ 6x—x? for x € R.

(a) By completing the square, find the range of f.
The function g is defined by g(x) = 4x+k for x € R where £ is a constant.

(b) Itis given that the graph of y = g~ f(x) meets the graph of y = g(x) at a single point P.

Determine the coordinates of P.
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