Problem 09709/13/0/N/23/ Q1
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A curve is such that its gradient at a point (x, y) is given by —) = x —3x 2. Itis given that the curve
passes through the point (4, 1).

Find the equation of the curve. [4]
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2

The circle with equation (x — 3)2 + (v — 5)” = 40 intersects the y-axis at points A and B

(a) Find the y-coordinates of A and B, expressing your answers in terms of surds.

(b) Find the equation of the circle which has AB as its diameter
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(a) Show that the equation
S5cos8—-sinfBtanB+1=0

may be expressed in the form acos?8 + bcos 8 + ¢ = 0, where a, b and ¢ are constants to be

found. [3]
(b) Hence solve the equation 5cos 8 —sinftan8+ 1 =0 for 0 < 6 < 2x. [4]
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(a) Expand the following in ascending powers of x up to and including the term in x.

(i) (1+2x)°.

(ii) (1 - ax)®, where a is a constant.

In the expansion of (1 + 2.\')5(1 — ax)®, the coefficient of x? is —_5_

(b) Find the possible values of a.
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The first, second and third terms of a geometric progression are 2p + 6, 5p and 8p + 2 respectively.

(a) Find the possible values of the constant p.

(b) One of the values of p found in (a) is a negative fraction.

Use this value of p to find the sum to infinity of this progression.
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. . . 2 .
A line has equation y = 6x — ¢ and a curve has equation y = cx” + 2x — 3. where c is a constant. The
line is a tangent to the curve at point P.

Find the possible values of ¢ and the corresponding coordinates of P. [7]
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The function f is defined by f(x) =1 + =7o forx > 2.
(a) State the range of f. [1]
(b) Obtain an expression for f ~!(x) and state the domain of f~'. [4]

The function g is defined by g(x) = 2x — 2 forx > 0.

(c) Obtain a simplified expression for gf(x). [2]
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The diagram shows part of the graph of y = sin(a(x + b)), where a and b are positive constants.

(a) State the value of a and one possible value of b. [2]

Another curve, with equation y = f(x), has a single stationary point at the point (p, g), where p and g
are constants. This curve is transformed to a curve with equation

y = -3f(4(x +8)).

J
(b) For the transformed curve, find the coordinates of the stationary point, giving your answer in
terms of p and q. [3]
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1
A curve has equation y = 2x7 — 1.

(a) Find the equation of the normal to the curve at the point A (4, 3), giving your answer in the form
y=mx+c. - [3]

A point is moving along the curve y =

1

1 . .
2x2 — 1 in such a way that at A the rate of increase of the
x-coordinate is 3cms™ .

(b) Find the rate of increase of the y-coordinate at A. 2]

At A the moving point suddenly changes direction and speed. and moves down the normal in such a
way that the rate of decrease of the y-coordinate is constant at Scms™!.

(¢) As the point moves down the normal, find the rate of change of its x-coordinate. [3]
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The diagram shows points A, B and C lying on a circle with centre O and radius r. Angle AOB is
2.8 radians. The shaded region is bounded by two arcs. The upper arc is part of the circle with centre
O and radius r. The lower arc is part of a circle with centre C and radius R.

(a) State the size of angle ACO in radians. [1]
(b) Find R in terms of r. [1]
(c) Find the area of the shaded region in terms of r. [7]
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The diagram shows part of the curve with equation y = x + W The lines x =1 and x = 2
BT

intersect the curve at P and Q respectively and R is the stationary point on the curve.

(a) Verify that the x-coordinate of R is % and find the y-coordinate of R. [4]
(b) Find the exact value of the area of the shaded region. [6]
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