Problem - M23/5/MATHX/HP1/ENG/TZ1/XX/Q1
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The function [ is defined by f(x)=

forxeR, x#2.
(@) Find the zero of f(x).
(b) For the graph of y =f(x), write down the equation of
(i)  the vertical asymptote;
(i)  the horizontal asymptote.

() Find f7'(x), the inverse function of f(x).
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Problem - M23/5/MATHX/HP1/ENG/TZ1/XX/Q2

On a Monday at an amusement park, a sample of 40 visitors was randomly selected as they
were leaving the park. They were asked how many times that day they had been on a ride
called The Dragon. This information is summarized in the following frequency table.

Number of times on Frequency
The Dragon
0 6
1 16
2 13
3 2
4 3

It can be assumed that this sample is representative of all visitors to the park for the following day.

(@) For the following day, Tuesday, estimate
(i)  the probability that a randomly selected visitor will ride The Dragon;
(i)  the expected number of times a visitor will ride The Dragon.

It is known that 1000 visitors will attend the amusement park on Tuesday. The Dragon can
carry a maximum of 10 people each time it runs.

(b) Estimate the minimum number of times The Dragon must run to satisfy demand.
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Problem - M23/5/MATHX/HP1/ENG/TZ1/XX/Q3

Solve cos2x = sinx, where -t <x <.

ﬁx’ ‘—Q,SiV\LK = SinX
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Problem - M23/5/MATHX/HP1/ENG/TZ1/XX/Q4

Find the range of possible values of & such that e* + Ink = 3e¢* has at least one real solution.
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Problem - M23/5/MATHX/HP1/ENG/TZ1/XX/Q5

The function f is defined by f(x) = singx, where ¢ > 0. The following diagram shows part of
the graph of f for 0 <x < 4m, where x is in radians. There are x-intercepts at x =0, 2m and 4m.
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(a) Find an expression for m in terms of ¢g. [2]
9.
The function g is defined by g(x) = 3sin%x, for 0 <x < 6m.
(b) On the axes above, sketch the graph of g. ‘ [4]
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Problem - M23/5/MATHX/HP1/ENG/TZ1/XX/Q6

The side lengths, xcm, of an equilateral triangle are increasing at a rate of 4cms ™.

Find the rate at which the area of the triangle, 4 cm’, is increasing when the side lengths are

5\/§ cm.
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Problem - M23/5/MATHX/HP1/ENG/TZ1/XX/Q7
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Consider P() 4m— m-+;"2—~ where ze Cand m e R".
Given that = ——;_ls:f-alctor of P(z), find the roots ofﬂz 0.
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Problem - M23/5/MATHX/HP1/ENG/TZ1/XX/Q8

Part of the graph of a function, f, is shown in the following diagram. The graph of y =1 (x)
has a y-intercept at (0, 3), an x-intercept at (a, 0) and a horizontal asymptote y =-2.
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Consider the function g(x) = | f(|x])|.

(@)
giving the equation of the asymptote.

On the following grid, sketch the graph of y = g(x), labelling any axis intercepts and

[4]




(b) Find the possible values of k such that (g(x))’ = k has exactly two solutions.
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Problem - M23/5/MATHX/HP1/ENG/TZ1/XX/Q9

The function £ is defined by f(y)=4r’-»* for -r<y<r.

The region enclosed by the graph of x = f(v) and the y-axis is rotated by 360° about
the y-axis to form a solid sphere. The sphere is drilled through along the y-axis, creating a
cylindrical hole. The resulting spherical ring has height, 7.

This information is shown in the following diagrams.

diagram not to scale
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The spherical ring has a volume of © cubic units. Find the value of /.
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Problem - M23/5/MATHX/HP1/ENG/TZ1/XX/Q10

Consider the arithmetic sequence u,, u,, u,, ....
The sum of the first » terms of this sequence is given by § = n+4n.

(@ (i) Find the sum of the first five terms.

(i)  Given that S, =60, find u,. [4]
(b) Find u,. [2]
(c) Hence or otherwise, write an expression for u, in terms of n. [3]
Consider a geometric sequence, v,, where v, =u, and v, = u,.
(d) Find the possible values of the common ratio, r. [3]
(e) Giventhat vy, <0, find v;. [2]
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Problem - M23/5/MATHX/HP1/ENG/TZ1/XX/Q11

Consider the following diagram, which shows the plan of part of a house.

diagram not to scale
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A narrow passageway with width %m is perpendicular to a room of width 6m. There is

a corner at point C. Points A and B are variable points on the base of the walls such
that A, C and B lie on a straight line.

Let L denote the length AB in metres.

Let o be the angle that [AB] makes with the room wall, where 0 <o < 2y

(a) Showthat L= %seca +6coseca . [2]
(b) (i) Find %
do
. dL
(i)  When — =0, show that o = arctan2. [5]
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(d) (i) Hence, justify that L is a minimum when o = arctan2.

(i)  When o = arctan2, show that

(i)  Determine this minimum value of L. [3]

Two people need to carry a pole of length 11.25m from the passageway into the room.
It must be carried horizontally.

(e) Determine whether this is possible, giving a reason for your answer. [2]
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Problem - M23/5/MATHX/HP1/ENG/TZ1/XX/Q12

Two lines, L, and L,, intersect at point P. Point A(2¢, 8, 3), where 1> 0, lieson L,. This is
shown in the following diagram. —’—L —

diagram not to scale
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The acute angle between the two lines is ;
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The direction vectorof L, is | 1 |, and P_;\ = 0 |. 0

0 3+1 é
(a) Show that 4¢= \/m 4 [4]
(b) Find the value of . [4]
(c) Hence or otherwise, find the shortest distance from A to L,. [4]

Aplane, IT, contains L, and L,.
(d) Find a normal vector to IT. [2]

The base of a right cone lies in I7, centred at A such that L, is a tangent to its base. The
volume of the cone is 901t\/§ cubic units.

(e) Find the two possible positions of the vertex of the cone. [7]
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