The following diagram shows a pyramid with vertex V and rectangular base OABC.

Point B has coordinates (6, 8, 0), point C has coordinates (6, 0, 0) and point V has coordinates (3, 4, 9).

diagram not to scale

(a) Find BV.

[2]

(b) Find the size of \hat{BVC} .

[4]

$$SM (a) BV = \sqrt{(6-3)^2 + (8-4)^2 + (0-9)^2}$$

= 10.29563
= 10.3

(b)
$$CV = \sqrt{(6-3)^2 + (0-4)^2 + (0-9)^2}$$

= 10.29563
= 10.3
 $CB = \sqrt{(6-6)^2 + (0-8)^2 + (0-0)^2}$

$$\angle BVC = CB^{-1} \left[\frac{BV^{2} + CV^{2} - BC^{-1}}{2 \times BU \times CV} \right]$$

$$= CGS^{-1} \left[\frac{10.3^{2} + 10.3^{2} - 8^{2}}{3 \times 10.3 \times 10.3} \right]$$

Consider the function $f(x) = e^x - 3x - 4$.

(a) On the following axes, sketch the graph of f for $-4 \le x \le 3$.

[3]

The function g is defined by $g(x) = e^{2x} - 6x - 7$.

(b) The graph of g is obtained from the graph of f by a horizontal stretch with scale factor k, followed by a vertical translation of c units.

Find the value of k and the value of c.

[2]

(b)
$$e^{x} - 3x - 4$$

 $e^{2x} - 6x - 7$

horizontal stretch by Scale factor $K=\frac{1}{2}$ and Vertical translation C=-3

A company is designing a new logo in the shape of a letter "C".

The letter "C" is formed between two circles with centre O.

The point A lies on the circumference of the inner circle with radius $r \, \text{cm}$, where r < 10.

The point B lies on the circumference of the outer circle with radius $10\,\mathrm{cm}_{\cdot}$

The reflex angle \hat{AOB} is 5.2 radians. The letter "C" is shown by the shaded area in the following diagram.

diagram not to scale

(a) Show that the area of the "C" is given by $260 - 2.6r^2$.

[2]

The area of the "C" is $64\,\mathrm{cm}^2$.

- (b) (i) Find the value of r.
 - (ii) Find the perimeter of the "C".

[5]

Set (a) Area of the Outer Sector
$$= \frac{1}{2} \times 10^{2} \times 5.2 = 260$$
Area of the inner Sector
$$= \frac{1}{2} \times 7^{2} \times 5.2 = 2.67^{2}$$

Arra of the C

(b) (i)
$$64 = 260 - 2.6x^{2}$$

 $2.6x^{2} = 260 - 64$
 $y = \sqrt{\frac{260 - 64}{2.6}}$
 $= 8.682431$

(b)(ii) Porimeter of the C

$$= 10 \times 5.2 + 8.682431 \times 6.2$$

$$+ (10 - 8.682431) \times 2$$

= 8.68 cm

A particle moves along a straight line. Its displacement, s metres, from a fixed point O after time t seconds is given by $s(t) = 4.3 \sin\left(\sqrt{3t+5}\right)$, where $0 \le t \le 10$.

The particle first comes to rest after q seconds.

(a) Find the value of
$$q$$
. [2]

(b) Find the total distance that the particle travels in the first
$$q$$
 seconds. [3]

$$SR(a)$$
 $S(t) = 4.3 Sin(\sqrt{3t+5})$
 $0 \le t \le 10$
 $9 = 5.7355$
 5.74
 5.74
 5.74
 5.74
 5.74
 5.74

The following table shows the probability distribution of a discrete random variable X, where a, $k \in \mathbb{R}^+$.

x	1	2	3	4
P(X=x)	k	k^2	а	k^3

Given that E(X) = 2.3, find the value of a.

$$K + K^{2} + a + k^{3} = 1$$
 — (i)
 $1 \times K + 2 \times K^{2} + 3 \times a + 4 \times K^{3} = 2.3$
 $K + 2K^{2} + 3a + 4K^{3} = 2.3$ — (ii)
Substitute value of a from equivalent to eq. (2)
 $a = 1 - K - K^{2} - K^{3}$
 $K + 2K^{2} + 3(1 - K - K^{2} - K^{3}) + 4K^{3} = 2.3$
 $K^{3} - K^{2} - 2K + 0.7 = 0$
 $K = 0.3158707$
 $a = 1 - (0.3158707) - (0.3158707) - (0.3158707)$
 $= 0.55528392$
 $= 0.5553$

The random variable X is such that $X \sim B(25, p)$ and Var(X) = 5.75.

(a) Find the possible values of p.

[3]

The random variable *Y* is such that Y = 1 - 2X.

(b) Find
$$Var(Y)$$
.

[2]

(d)

$$Var(x) = npq$$

$$= 25p(1-p)$$

$$5.75 = 25p-25p^{2}$$

$$25p^{2}-25p+5.75=0$$

$$P = 0.6414 P = 0.358579$$

$$= 0.641 P = 0.358$$

$$Y = 1-2X$$

$$Var(Y) = Var(1) + 4 Var(X)$$

$$= 0 + 4 \times 5.75$$

$$= 23$$

A junior baseball team consists of six boys and three girls.

The team members are to be placed in a line to have their photograph taken.

- (a) In how many ways can the team members be placed if
 - (i) there are no restrictions;
 - (ii) the girls must be placed next to each other.

[3]

(b) Five members of the team are selected to attend a baseball summer camp. Find the number of possible selections that contain at least two girls. [3]

Set
$$a(i)$$
 $9! = 362880$

(ii) $3!7! = 30240$

(b) $\binom{6}{3} \times \binom{3}{2} + \binom{6}{2} \binom{3}{3}$
 $20 \times 3 + 15 \times 1$
 $= 75$

Three points are given by A(0, p, 2), B(1, 1, 1) and C(p, 0, 4), where p is a positive constant.

(a) Show that
$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{pmatrix} 2-3p \\ -2-p \\ p^2-2p \end{pmatrix}$$
. [4]

- (b) Hence, find the smallest possible value of $\left| \overrightarrow{AB} \times \overrightarrow{AC} \right|^2$. [3]
- (c) Hence, find the smallest possible area of triangle ABC. [2]

(c) Area of triangle
$$= \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$$

$$= \frac{1}{2} \times \sqrt{6.75} = 1.299$$

$$= \frac{1}{2} \times \sqrt{6.75} = 1.30$$

Consider the differential equation $\frac{dy}{dx} = \frac{4-y}{10}$, where y = 2 when x = 0.

- (a) Use Euler's method with a step size of 0.1 to find an approximation for y when x = 0.5. Give your answer correct to four significant figures. [3]
- (b) By solving the differential equation, show that $y = 4 2e^{-\frac{x}{10}}$. [5]
- (c) Find the absolute value of the error in your approximation in part (a). [1]

$$\begin{array}{lll} & \chi_{0} = 0 & \chi_{0} = 2 \\ \chi_{1} = 0 + 0 \cdot 1 = 0 \cdot 1 & \chi_{1} = 2 + 0 \cdot 1 \times \frac{4 - 2}{10} = 2 \cdot 02 \\ \chi_{2} = 0 \cdot 1 + 0 \cdot 1 = 0 \cdot 2 & \chi_{2} = 2 \cdot 02 + 0 \cdot 1 \times \frac{4 - 2 \cdot 02}{10} = 2 \cdot 0398 \\ \chi_{3} = 0 \cdot 2 + 0 \cdot 1 = 0 \cdot 3 & \chi_{3} = 2 \cdot 0398 + 0 \cdot 1 \times \frac{4 - 2 \cdot 0398}{4 - 2 \cdot 0398} = 2 \cdot 0594 \\ \chi_{4} = 0 \cdot 3 + 0 \cdot 1 = 0 \cdot 4 & \chi_{5} = 0 \cdot 4 + 0 \cdot 1 \times \frac{4 - 2 \cdot 0594}{10} \\ \chi_{5} = 2 \cdot 07881 & \chi_{5} = 2 \cdot 07881 + 0 \cdot 1 \times \frac{4 - 2 \cdot 07881}{10} \\ \chi_{5} = 2 \cdot 07881 + 0 \cdot 1 \times \frac{4 - 2 \cdot 07881}{10} \end{array}$$

= 9.09802

(b)
$$\frac{dy}{dz} = \frac{4-4}{10}$$
by variable superable
$$\int \frac{dy}{4-y} = \int \frac{dz}{10}$$

$$4 - 4 - 4 = \frac{x}{10} + c$$

$$x = 0$$
 $y = 2$
 $\frac{4 - 21}{-1} = 0$
 $0 = -1$
 $0 = -1$

$$\frac{4 - 4 - 4}{-1} = \frac{x}{10} - 4x^{2}$$

$$- 4x + 4x^{2} = \frac{x}{10}$$

$$- \frac{2}{4 - 4} = \frac{2}{10}$$

$$4 - 4 = 2e^{-\frac{x}{10}}$$

$$4 - 4 = 2e^{-\frac{x}{10}}$$

$$4 - 2e^{-\frac{$$

A farmer is growing a field of wheat plants. The height, Hcm, of each plant can be modelled by a normal distribution with mean μ and standard deviation σ .

It is known that P(H < 94.6) = 0.288 and P(H > 98.1) = 0.434.

- Find the probability that the height of a randomly selected plant is between 94.6 cm (a) and 98.1 cm. [2]
- (b) Find the value of μ and the value of σ . [5]

The farmer measures 100 randomly selected plants. Any plant with a height greater than 98.1 cm is considered ready to harvest. Heights of plants are independent of each other.

- Find the probability that exactly 34 plants are ready to harvest. (c) (i)
 - Given that fewer than 49 plants are ready to harvest, find the probability that (ii) exactly 34 plants are ready to harvest. [6]

In another field, the farmer is growing the same variety of wheat, but is using a different fertilizer. The heights of these plants, Fcm, are normally distributed with mean 98.6 and standard deviation d. The farmer finds the interguartile range to be $4.82 \,\mathrm{cm}$.

(d) Find the value of
$$d$$
. [3]

(d) Find the value of d.

Let
$$(9)$$
 $P(94.6 < H < 98.1)$
 $= P(H < 98.1) - P(H < 94.6)$
 $= 1 - 0.434 - 0.288$
 $= 0.278$

(b) $P(H < 98.1) = 0.566$
 $\frac{98.1 - 4}{\sigma} = Inv N(0.566) \sigma$
 $98.1 = 4 + Inv N(0.566) \sigma$
 $P(H < 94.6) = 0.288$
 $94.6 = 4 + Inv N(0.288) \sigma$
 $98.1 = 4 + 0.1661 \sigma$
 $94.6 = 4 - 0.5592 \sigma$
 $4 = 97.3 \sigma = 4.82$

(c) (i)
$$H \sim B(100, 0.434)$$
 $P(H = 34)$
 $= \binom{100}{34}(0.434)^{3}(1-0.434)$
 $= 0.01332$

(ii) $P(H = 34|H < 44)$
 $= \frac{P(H = 34)}{P(H < 49)}$
 $= \frac{0.01332}{0.8482}$
 $= 0.0157$

(d) $F \sim N(98.6, d^2)$

We know $IRR = 4.82$
 $R = 98.6 + 4.82 = 101.01$
 $R = 98.6 + 4.82 = 101.01$

So $P(96.19 < F < 101.01) = 75 - 25$
 $= 15$
 $P(F < 101.01) - P(F < 96.19) = 0.5$
 $P(Z < \frac{101.01 - 98.6}{2}) - P(Z < \frac{96.19 - 93.6}{2}) = 0.5$
 $P(Z < \frac{3.41}{4}) - P(Z < -\frac{2.41}{4}) = 0.5$
 $I - P(Z < -\frac{2.41}{4}) - P(Z < -\frac{2.41}{4}) = 0.5$

$$1 - 2 P \left(2 < - \frac{2.41}{d} \right) = 0.5^{-}$$

$$P \left(2 < - \frac{2.41}{d} \right) = 1 - \frac{0.5^{-}}{2} = 0.25^{-}$$

$$- \frac{2.41}{d} = Inv N \left(0.25^{-} \right)$$

$$- \frac{2.41}{d} = - 0.67449$$

$$d = 3.57307$$

$$= 3.57$$

Consider the function defined by $f(x) = \frac{x^2 - 14x + 24}{2x + 6}$, where $x \in \mathbb{R}$, $x \neq -3$.

- (a) State the equation of the vertical asymptote on the graph of f. [1]
- (b) Find the coordinates of the points where the graph of f crosses the x-axis. [2]

The graph of f also has an oblique asymptote of the form y = ax + b, where $a, b \in \mathbb{Q}$.

- (c) Find the value of a and the value of b. [4]
- (d) Sketch the graph of f for $-50 \le x \le 50$, showing clearly the asymptotes and any intersections with the axes. [4]
- (e) Find the range of f. [4]
- (f) Solve the inequality f(x) > x. [4]

$$SH(a)$$
 $2x+6=0$ $x=-3$

(b) When graph f cross x-axis mean we have find x-intercepts x = 2 x = 12

So (2,0) and (12,0)

$$\begin{array}{c}
(C) \\
2x+6 \int x^2 - 14x + 24 \int \frac{1}{2}x - \frac{17}{2} \\
x^2 + 3x \\
- 17x + 24 \\
- \sqrt{7}x - 51 \\
- 75
\end{array}$$

So equation oblique asymptote $y = \frac{1}{2}x - \frac{17}{2}$

$$\alpha = \frac{17}{2}$$
 $b = -\frac{17}{2}$

(e) Range

minimum point Coordinate = (5.6025, -1.33975) = (5.6025, -1.33975) = (5.6025, -1.33975) = -11.6603, -18.6603So range would be $= -18.7 \text{ and } +(x) \ge -1.34$

(f) Salve f(x) > xSo point of intersection (1.13553, 1.13553) (-21.1355, -21.1355) x < -21.1 cmd -3< x < 1.14

Line L is given by the vector equation $\mathbf{r_1} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} + s \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix}$ where $s \in \mathbb{R}$.

Line M is given by the vector equation $\mathbf{r_2} = \begin{pmatrix} 9 \\ 9 \\ 11 \end{pmatrix} + t \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix}$ where $t \in \mathbb{R}$.

- (a) Show that lines L and M intersect at a point A and find the position vector of A. [5]
- (b) Verify that the lines L and M both lie in the plane Π given by $r \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 7$. [3]

Point B has position vector $\begin{pmatrix} -3\\12\\2 \end{pmatrix}$. A line through B perpendicular to Π intersects Π at point C.

- (c) (i) Find the position vector of C
 - (ii) Hence, find $\begin{vmatrix} \vec{BC} \end{vmatrix}$.

[7] [3]

(d) Find the reflection of the point B in the plane Π .

$$SA(a) \quad 1+2s = 9+4t$$

$$2+3s = 9+t$$

$$-3+6s = (1+2t)$$

$$2s-4t = 8 - (i)$$

$$3s-t=7 - (ii)$$

$$s = 2 \quad t = -1$$

$$\left(\frac{1+2x2}{2+3x2}\right) = \begin{pmatrix} 5\\8\\9 \end{pmatrix}$$

$$\frac{9+(-1)4}{9+(-1)1} = \begin{pmatrix} 5\\8\\9 \end{pmatrix}$$

So position of
$$A = \begin{pmatrix} 5 \\ 8 \\ 9 \end{pmatrix}$$

(b)
$$\binom{5}{8} \cdot \binom{0}{2} = 5 \times 0 + 8 \times 2 + 9 \times -1$$

= $16 - 9 = 7$

hence Lines L and M lie in given planeT

$$\mathfrak{H} = \begin{pmatrix} -3 \\ 12 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$$

point on line

$$\begin{pmatrix} -3 \\ 12+2\lambda \\ 2-\lambda \end{pmatrix}$$

As line intersect plane IT at C therefore

therefore
$$\begin{pmatrix} -3 \\ 12+2\lambda \\ 2-\lambda \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} = 7$$

$$\lambda = -3$$

(i) Position vector C = 12+2(-3)2-(-3)

$$= \begin{pmatrix} -3 \\ 6 \\ 5 \end{pmatrix}$$

(ii)
$$\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB}$$

$$= \begin{pmatrix} -3 \\ 6 \\ 5 \end{pmatrix} - \begin{pmatrix} -3 \\ 12 \\ 2 \end{pmatrix}$$

$$=\begin{pmatrix} 5 \\ -6 \\ 3 \end{pmatrix}$$

$$|BC| = \sqrt{6(-6)^2 + 3^2}$$

= $\sqrt{45} = 3\sqrt{5}$

$$\frac{3}{00} = \begin{pmatrix} -3 \\ 12 \\ 2 \end{pmatrix} + 4 \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$$

We KNOW

$$M=2\lambda=-6$$

$$0B' = \begin{pmatrix} -3 \\ 12 \\ 2 \end{pmatrix} - 6 \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$$
$$= \begin{pmatrix} -3 \\ 0 \\ 8 \end{pmatrix}$$