Skip to main content

Differentiation of polynomial

Differentiation is process of getting derivative.  Differentiation has applications to nearly all quantitative disciplines.  For example, in physics, the derivative of the displacement of a moving body with respect to time is the velocity of the body, and the derivative of velocity with respect to time is acceleration. Similarly in chemistry   as well as Economics also derivative

Formulae of Calculus

List of Calculus  Formulas-basic Properties and Formulas of Integration : If f (x) and g(x) are differentiable functions . Another In basic calculus, we learn rules and formulas for differentiation, which is the method by which we calculate the derivative of a function, and integration, Differential Calculus that is concerning rates of change and slopes of curves, and Integral Calculus concerning […]

Derivative

The derivative of a function of a single variable at a chosen input value.  Derivative is the slope of the tangent line to the graph of the function at that point.  Hence derivative of a function y = f(x) of a variable x is a measure of the rate at which the value y of the function changes with respect to the change […]

Derivative of polynomials

Derivative is product of differentiation.  Differentiation has applications to nearly all quantitative disciplines.  For example, in physics, the derivative of the displacement of a moving body with respect to time is the velocity of the body, and the derivative of velocity with respect to time is acceleration. Therefore  differentiation is process Derivative

Related Rates -2

First of all related rate problems are applications of derivative . One of the hardest calculus problems that students have trouble .  Because each application question has a different approach in solving the problem. Hence called rate of change. Related rates

Related Rates

Rate of change is also related rate problems are applications of derivative . One of the hardest calculus problems that students have trouble .  Because each application question has a different approach in solving the problem. Ralated rates

Derivative test

First Derivative Test for Local Extrema. If the derivative changes from positive (increasing function) to negative (decreasing function), the function has a local (relative) maximum at the critical point. Second Derivative Test. 1. If , then has a local minimum at . 2. If , then has a local maximum at . The extremum test gives slightly more general conditions under which […]

 
INQUIRY FORM
close slider
[caldera_form id="CF59f1f781374e6"]